References
- X. Zhang, L. Zhao, J. Wang, L. Chen, X. Yue, Residual
Oil Distribution of Heterogeneous Reservoir at Different
Water Drive Velocity, Proceedings of the International
Field Exploration and Development Conference 2017,
Springer, Singapore, 2019.
- D. Wijeratne, B.M. Halvorsen, Computational study of fingering
phenomenon in heavy oil reservoir with water drive, Fuel,
158 (2015) 306–314.
- Z. Wang, Y. Xu, Y. Gan, X. Han, W. Liu, H. Xin, Micromechanism
of partially hydrolyzed polyacrylamide molecule agglomeration
morphology and its impact on the stability of crude
oil−water interfacial film, J. Pet. Sci. Eng., 214 (2022) 110492,
doi: 10.1016/j.petrol.2022.110492.
- D. Ramirez, C.D. Collins, Maximisation of oil recovery from an
oil–water separator sludge: influence of type, concentration,
and application ratio of surfactants, Waste Manage., 82 (2018)
100–110.
- H. Zhong, Y. He, E. Yang, Y. Bi, T. Yang, Modeling of microflow
during viscoelastic polymer flooding in heterogenous
reservoirs of Daqing Oilfield, J. Pet. Sci. Eng., 210 (2022) 110091,
doi: 10.1016/j.petrol.2021.110091.
- Q. Gao, Y. Wang, Y. Jiang, Study on scaling formation
characteristics and produced liquid properties in oil–wells of
ASP Flooding, Adv. Mater. Res., 524 (2012) 1270–1278.
- Y.V. Savinykh, D.I. Chuykina, L.D. Stakhina, Impact of
integrated technologies of enhanced oil recovery on the changes
in the composition of heavy oil, J. Sib. Fed. Univ.: Chem.,
13 (2020) 17–24.
- U.A. Aziz, N. Adnan, M.Z.R. Sohri, D.F. Mohshim, A.K. Idris,
M.A. Azman, Characterization of anionic–nonionic surfactant
mixtures for enhanced oil recovery, J. Solution Chem., 48 (2019)
1617–1637.
- Z.-H. Wang, X.-Y. Liu, H.-Q. Zhang, Y. Wang, Y.-F. Xu, B.-L. Peng,
Y. Liu, Modeling of kinetic characteristics of alkaline-surfactant polymer-strengthened foams decay under ultrasonic standing
wave, Pet. Sci., 19 (2022) 1825–1839.
- H. Liu, G. Jia, S. Chen, Y. Cai, Optimization of flow deflector
quantities for gravity oil–water separator, Appl. Mech. Mater.,
675 (2014) 685–688.
- H. Luo, J. Wen, C. Lv, Z. Wang, Modeling of viscosity of
unstable crude oil–water mixture by characterization of energy
consumption and crude oil physical properties, J. Pet. Sci. Eng.,
212 (2022) 110222, doi: 10.1016/j.petrol.2022.110222.
- D.D. Fazullin, L.I. Fazullina, D.A. Yarovikova, G.V. Mavrin,
I.A. Nasyrov, I.G. Shaikhiev, Demulsification and ultrafiltration
of water-oil emulsions, Chem. Pet. Eng., 57 (2022) 783–791.
- D. Langevin, J.F. Argillier, Interfacial behavior of asphaltenes,
Adv. Colloid Interface Sci., 233 (2016) 222–227.
- A.M. Sousa, M.J. Pereira, H.A. Matos, Oil-in-water and water-in-oil emulsions formation and demulsification, J. Pet. Sci. Eng.,
210 (2022) 110041, doi: 10.1016/j.petrol.2021.110041.
- Y. Dhandhi, R.K. Chaudhari, T.K. Naiya, Development in
separation of oilfield emulsion toward green technology – a
comprehensive review, Sep. Sci. Technol., 57 (2021) 1642–1668.
- H. Pramadika, A.R. Wastu, B. Satiyawira, C. Rosyidan,
M. Maulani, A. Prima, L. Samura, Z. Darajat, Demulsification
optimization process on separation of water with heavy oil,
AIP Conf. Proc., 2363 (2021) 020029, doi: 10.1063/5.0061527.
- H. Gong, W. Li, X. Zhang, Y. Peng, B. Yu, Y. Mou, Simulation
of the coalescence and breakup of water-in-oil emulsion in
a separation device strengthened by coupling electric and
swirling centrifugal fields, Sep. Purif. Technol., 238 (2020)
116397, doi: 10.1016/j.seppur.2019.116397.
- N.H. Abdurahman, R.B. Yunus, N.H. Azhari, N. Said, Z. Hassan,
The potential of microwave heating in separating water-in-oil
(w/o) emulsions, Energy Procedia, 138 (2017) 1023–1028.
- S.A. Solovyev, O.V. Solovyeva, R.R. Yafizov, S.I. Ponikarov,
I.Y. Portnov, Study of the influence of coalescence baffle
inclination angle on the intensity of water-oil emulsion
separation in a separator section, Chem. Pet. Eng., 57 (2021)
19–24.
- C. Atehortúa, N. Pérez, M. Andrade, L. Pereira, J.C. Adamowski,
Water-in-oil emulsions separation using an ultrasonic standing
wave coalescence chamber, Ultrason. Sonochem., 57 (2019)
57–61.
- X. Li, L. Han, Z. Huang, Z. Li, F. Li, H. Duan, L. Huang,
Q. Jia, H. Zhang, S. Zhang, A robust air superhydrophilic/superoleophobic
diatomite porous ceramic for high-performance
continuous separation of oil-in-water emulsion, Chemosphere,
303 (2022) 134756, doi: 10.1016/j.chemosphere.2022.134756.
- F. Li, X. Wan, J. Hong, X. Guo, M. Sun, H. Lv, H. Wang, J. Mi,
J. Cheng, X. Pan, M. Xu, Z. Wang, A self-powered and efficient
triboelectric dehydrator for separating water-in-oil emulsions
with ultrahigh moisture content, Adv. Mater. Technol., 7 (2022)
2200198, doi: 10.1002/admt.202200198.
- B. Ren, Y. Kang, Aggregation of oil droplets and demulsification
performance of oil-in-water emulsion in bidirectional
pulsed electric field, Sep. Purif. Technol., 211 (2019) 958–965.
- F. Esmaelion, H. Tavanai, A.A.M. Beigi, M. Bazarganipour,
Application of fibrous structures in separation of water and oil
emulsions: a review, J. Environ. Chem. Eng., 10 (2022) 107999,
doi: 10.1016/j.jece.2022.107999.
- B. Xu, Fast and energy-efficient demulsification for crude oil
emulsions using pulsed electric field, Int. J. Electrochem. Sci.,
12 (2017) 9242–9249.
- K. Guo, Y. Lv, L. He, X. Luo, D. Yang, Separation characteristics
of w/o emulsion under the coupling of electric field and
magnetic field, Energy Fuel, 33 (2019) 2565–2574.
- S. Mhatre, S. Simon, J. Sjöblom, Z. Xu, Demulsifier assisted
film thinning and coalescence in crude oil emulsions under dc
electric fields, Chem. Eng. Res. Des., 134 (2018) 117–129.
- M. Mohammadi, S. Shahhosseini, M. Bayat, Direct numerical
simulation of water droplet coalescence in the oil, Int. J. Heat
Fluid Flow, 36 (2012) 58–71.
- F.M. Fowkes, F.W. Anderson, J.E. Berger, Bimetallic coalescers:
electrophoretic coalescence of emulsions in beds of mixedmetal
granules, Environ. Sci. Technol., 4 (2002) 510–514.
- Y. Peng, L. Tao, H. Gong, X. Zhang, Review of the dynamics of
coalescence and demulsification by high-voltage pulsed electric
fields, Int. J. Chem. Eng., 4 (2016) 1–8.
- K. Adamiak, J.M. Floryan, Dynamics of Water Droplet
Distortion and Break-Up in a Uniform Electric Field, 2010 IEEE
Industry Applications Society Annual Meeting, IEEE, Houston,
TX, USA, 2010, pp. 2374–2383.
- S.H. Mousavi, M. Ghadiri, M. Buckley, Electro-coalescence of
water drops in oils under pulsatile electric fields, Chem. Eng.
Sci., 120 (2014) 130–142.
- S. Ervik, S.M. Helles, S.T. Munkejord, B. Müller, Experimental
and Computational Studies of Water Drops Falling Through
Model Oil with Surfactant and Subjected to an Electric Field,
2014 IEEE 18th International Conference on Dielectric Liquids
(ICDL), IEEE, Bled, Slovenia, 2014.
- Z. Wang, X. Le, Y. Feng, Z. Hu, Dehydration of aging oil by an
electrochemical method, Chem. Technol. Fuels Oils, 50 (2014)
262–268.
- Y. Song, Y. Xu, Z. Wang, An experimental study on efficient
demulsification for produced emulsion in alkaline/surfactant/polymer flooding, J. Energy Resour. Technol., 144 (2022) 093001,
doi: 10.1115/1.4053136.
- N. Koutsourakis, J.G. Bartzisa, N.C. Markatos, Evaluation
of Reynolds stress, k–ε and RNG k–ε turbulence models in
street canyon flows using various experimental datasets,
Environ. Fluid Mech., 12 (2012) 379–403.
- Y. Mori, M. Sakai, Development of a robust Eulerian–Lagrangian
model for the simulation of an industrial solid–fluid system,
Chem. Eng. J., 406 (2021) 126841, doi: 10.1016/j.cej.2020.126841.
- R. Keser, V. Vukčević, M. Battistoni, H.G. Im, H. Jasak, Implicitly
coupled phase fraction equations for the Eulerian multi-fluid
model, Comput. Fluids, 192 (2019) 104277, doi: 10.1016/j.compfluid.2019.104277.
- D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries,
2006.
- T.K. Bandyopadhyay, CFD Analysis for Non-Newtonian and
Gas-Non-Newtonian Liquid Flow, LAP LAMBERT Academic
Publishing, Saarbrucken, 2013.