References
- I. Maamoun, O. Eljamal, O. Falyouna, R. Eljamal, Y. Sugihara,
Multi-objective optimization of permeable reactive barrier design
for Cr(VI) removal from groundwater, Ecotoxicol. Environ. Saf.,
200 (2020) 110773, doi: 10.1016/j.ecoenv.2020.110773.
- H. Tian-Pei, X. Ying, P. Jie-Ru, C. Zhi, L.I. Li-Fen, X.U. Lei,
Z. Ling-Ling, G. Xiong, Aerobic Cr(VI) reduction by an
indigenous soil isolate Bacillus thuringiensis BRC-ZYR2,
Pedosphere, 24 (2014) 652–661.
- F. Fu, J. Ma, L. Xie, B. Tang, W. Han, S. Lin, Chromium removal
using resin supported nanoscale zero-valent iron, J. Environ.
Manage., 128 (2013) 822–827.
- E. Brasili, I. Bavasso, V. Petruccelli, G. Vilardi, A. Valletta,
C. Dal Bosco, A. Gentili, G. Pasqua, L. Di Palma, Remediation
of hexavalent chromium contaminated water through zerovalent
iron nanoparticles and effects on tomato plant growth
performance, Sci. Rep.-UK, 10 (2020) 1920, doi: 10.1038/s41598-020-58639-7.
- G. Vilardi, J. Rodriguez-Rodriguez, J. Miguel Ochando-Pulido,
L. Di Palma, N. Verdone, Fixed-bed reactor scale-up and
modelling for Cr(VI) removal using nano iron-based coated
biomass as packing material, Chem. Eng. J., 361 (2019) 990–998.
- S. Lou, S. Liu, C. Dai, A. Tao, B. Tan, G. Ma, R. Chalov, S. Chalov,
Heavy metal distribution and groundwater quality assessment
for a coastal area on a Chinese Island, Pol. J. Environ. Stud.,
26 (2017) 733–745.
- C. Qian, W. Zhang, Progress of application of PRB reaction
medium materials in remediation of contaminated groundwater,
Environ. Eng., 36 (2018) 1–5, 11.
- M.M. Scherer, S. Richter, R.L. Valentine, P.J.J. Alvarez,
Chemistry and microbiology of permeable reactive barriers for
in situ groundwater clean-up, Crit. Rev. Microbiol., 26 (2008)
221–264.
- R. Thiruvenkatachari, S. Vigneswaran, R. Naidu, Permeable
reactive barrier for groundwater remediation, J. Ind. Eng.
Chem., 14 (2008) 145–156.
- W.K. Walter, U.S. EPA Field Applications of In Situ Remediation
Technologies: Permeable Reactive Barriers, EPA, Washington,
1999.
- F. Obiri-Nyarko, S.J. Grajales-Mesa, G. Malina, An overview of
permeable reactive barriers for in situ sustainable groundwater
remediation, Chemosphere, 111 (2014) 243–259.
- H. Dong, L. Li, Y. Lu, Y. Cheng, Y. Wang, Q. Ning, B. Wang,
L. Zhang, G. Zeng, Integration of nanoscale zero-valent iron
and functional anaerobic bacteria for groundwater remediation:
a review, Environ. Int., 124 (2019) 265–277.
- R.W. Gillham, S.F. Ohannesin, enhanced degradation of
halogenated aliphatics by zero-valent iron, Groundwater,
32 (1994) 958–967.
- J. Klausen, P.J. Vikesland, T. Kohn, D.R. Burris, W.P. Ball,
A.L. Roberts, Longevity of granular iron in groundwater
treatment processes: solution composition effects on reduction
of organohalides and nitroaromatic compounds, Environ. Sci.
Technol., 37 (2003) 1208–1218.
- P. Lacina, V. Dvorak, E. Vodickova, P. Barson, J. Kalivoda,
S. Goold, The application of nano-sized zero-valent iron for
in situ remediation of chlorinated ethylenes in groundwater: a
field case study, Water Environ. Res., 87 (2015) 326–333.
- R.M. Powell, R.W. Puls, S.K. Hightower, D.A. Sabatini,
Coupled iron corrosion and chromate reduction: mechanisms
for subsurface remediation, Environ. Sci. Technol., 29 (1995)
1913–1922.
- C. Kantar, C. Ari, S. Keskin, Z.G. Dogaroglu, A. Karadeniz,
A. Alten, Cr(VI) removal from aqueous systems using pyrite
as the reducing agent: batch, spectroscopic and column
experiments, J. Contam. Hydrol., 174 (2015) 28–38.
- R.T. Wilkin, R.W. Puls, G.W. Sewell, Long-term performance of
permeable reactive barriers using zero-valent iron: geochemical
and microbiological effects, Groundwater, 41 (2003) 493–503.
- Z. Wang, G. Chen, X. Wang, S. Li, Y. Liu, G. Yang, Removal
of hexavalent chromium by bentonite supported organosolv
lignin-stabilized zero-valent iron nanoparticles from
wastewater, J. Cleaner Prod., 267 (2020) 122009, doi: 10.1016/j.jclepro.2020.122009.
- M. Cai, J. Zeng, Y. Chen, P. He, F. Chen, X. Wang, J. Liang, C. Gu,
D. Huang, K. Zhang, M. Gan, J. Zhu, An efficient, economical,
and easy mass production biochar supported zero-valent iron
composite derived from direct-reduction natural goethite for
Cu(II) and Cr(VI) remove, Chemosphere (Oxford), 285 (2021)
131539, doi: 10.1016/j.chemosphere.2021.131539.
- F. Zhu, X. Tan, W. Zhao, L. Feng, S. He, L. Wei, L. Yang,
K. Wang, Q. Zhao, Efficiency assessment of ZVI-based media
as fillers in permeable reactive barrier for multiple heavy metalcontaminated
groundwater remediation, J. Hazard. Mater.,
424 (2022) 127605, doi: 10.1016/j.jhazmat.2021.127605.
- C. Wang, Z. Xu, G. Ding, X. Wang, M. Zhao, S.S.H. Ho,
Y. Li, Comprehensive study on the removal of chromate from
aqueous solution by synthesized kaolin supported nanoscale
zero-valent iron, Desal. Water Treat., 57 (2015) 5065–5078.
- S. Peng, H. Meng, Y. Ouyang, J. Chang, Nanoporous magnetic
cellulose– chitosan composite microspheres: preparation,
characterization, and application for Cu(II) adsorption, Ind.
Eng. Chem. Res., 53 (2014) 2106–2113.
- E.I. Rabea, M.E.T. Badawy, C.V. Stevens, G. Smagghe,
W. Steurbaut, Chitosan as antimicrobial agent: applications and
mode of action, Biomacromolecules, 4 (2003) 1457–1465.
- R. Zhao, X. Zheng, J. Ren, X. Tang, Y. Long, H. Zheng, Research
progress on the modification of chitosan by cross-linking and
grafting, Polym. Bull., (2019) 43–50.
- H.M. Ibrahim, M. Mostafa, N.G. Kandile, Potential use
of N-carboxyethylchitosan in biomedical applications:
preparation, characterization, biological properties, Int. J. Biol.
Macromol., 149 (2020) 664–671.
- J. Dai, H. Yan, H. Yang, R. Cheng, Simple method for preparation
of chitosan/poly(acrylic acid) blending hydrogel beads and
adsorption of copper(II) from aqueous solutions, Chem. Eng. J.,
165 (2010) 240–249.
- Q. Song, C. Wang, Z. Zhang, J. Gao, Adsorption of Cu(II) and
Ni(II) using a novel xanthated carboxymethyl chitosan, Sep. Sci.
Technol., 49 (2014) 1235–1243.
- X. Wang, Y. Zheng, A. Wang, Fast removal of copper ions from
aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite
composites, J. Hazard. Mater., 168 (2009) 970–977.
- Y. Lin, Y. Hong, Q. Song, Z. Zhang, J. Gao, T. Tao, Highly
efficient removal of copper ions from water using poly(acrylic
acid)-grafted chitosan adsorbent, Colloid Polym. Sci., 295 (2017)
627–635.
- Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by
peat, Chem. Eng. J., 70 (1998) 115–124.
- H. Ge, H. Chen, S. Huang, Microwave preparation and
properties of O-crosslinked maleic acyl chitosan adsorbent
for Pb2+ and Cu2+, J. Appl. Polym. Sci., 125 (2012) 2716–2723.
- G. Vilardi, Mathematical modelling of simultaneous nitrate and
dissolved oxygen reduction by Cu-nZVI using a bi-component
shrinking core model, Powder Technol., 343 (2019) 613–618.
- V.V. Thekkae Padil, J. Filip, K.I. Suresh, S. Wacławek, M. Černík,
Electrospun membrane composed of poly[acrylonitrile-co-
(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI
nanoparticles and its application for the removal of arsenic
from water, RSC Adv., 6 (2016) 110288–110300.
- P.B. Vilela, C.A. Matias, A. Dalalibera, V.A. Becegato,
A.T. Paulino, Polyacrylic acid-based and chitosan-based
hydrogels for adsorption of cadmium: equilibrium isotherm,
kinetic and thermodynamic studies, J. Environ. Chem. Eng.,
7 (2019) 103327.
- N.A. Mohamed, N.A. Abd El-Ghany, Pyromellitimide benzoyl
thiourea cross-linked carboxymethyl chitosan hydrogels as
antimicrobial agents, Int. J. Polym. Mater. Polym. Biomater.,
66 (2017) 861–870.
- T. Liu, B. Li, J. Zhang, L. Zhu, J. Chen, Kinetic studies on the
pyrolysis of chitosan and chitin, Food Ferment. Ind., 36 (2010)
32–36.
- S. El-Houte, M. El-Sayed Ali, O.T. Sørensen, Dehydration of
CuSO4·5H2O studied by conventional and advanced thermal
analysis techniques, Thermochim. Acta, 138 (1989) 107–114.
- T. Liu, Kinetic studies on the pyrolysis of a water-soluble
chitosan, Univ. Nat. Sci., 46 (2012) 65–70.
- H.F.G. Barbosa, D.S. Francisco, A.P.G. Ferreira, É.T.G. Cavalheiro,
A new look towards the thermal decomposition of chitins and
chitosans with different degrees of deacetylation by coupled
TG-FTIR, Carbohydr. Polym., 225 (2019) 115232, doi: 10.1016/j.carbpol.2019.115232.
- C. Xu, W. Yang, W. Liu, H. Sun, C. Jiao, A. Lin, Performance and
mechanism of Cr(VI) removal by zero-valent iron loaded onto
expanded graphite, J. Environ. Sci.-China, 67 (2018) 14–22.
- Y. Gong, L. Gai, J. Tang, J. Fu, Q. Wang, E.Y. Zeng, Reduction of
Cr(VI) in simulated groundwater by FeS-coated iron magnetic
nanoparticles, Sci. Total Environ., 595 (2017) 743–751.
- A.J. Varma, S.V. Deshpande, J.F. Kennedy, Metal complexation
by chitosan and its derivatives: a review, Carbohydr. Polym.,
55 (2004) 77–93.
- G. Vilardi, B. De Caprariis, M. Stoller, L. Di Palma, N. Verdone,
Intensified water denitrification by means of a spinning
disk reactor and stirred tank in series: kinetic modelling and
computational fluid dynamics, J. Water Process Eng., 34 (2020)
101147, doi: 10.1016/j.jwpe.2020.101147.
- T. Yoadsomsuay, N. Grisdanurak, C.H. Liao, Influence of
chitosan on modified nanoscale zero-valent iron for arsenate
removal, Desal. Water Treat., 57 (2016) 17861–17869.
- H. Chen, J. Dou, H. Xu, The effect of low-molecular-weight
organic-acids (LMWOAs) on treatment of chromiumcontaminated
soils by compost-phytoremediation: kinetics of
the chromium release and fractionation, J. Environ. Sci.-China,
70 (2018) 45–53.
- Z. Yu, L. Hu, I.M.C. Lo, Transport of the arsenic(As)-loaded
nano zero-valent iron in groundwater-saturated sand columns:
roles of surface modification and As loading, Chemosphere,
216 (2019) 428–436.
- Y. Wen, Z. Tang, Y. Chen, Y. Gu, Adsorption of Cr(VI) from
aqueous solutions using chitosan-coated fly ash composite as
biosorbent, Chem. Eng. J., 175 (2011) 110–116.
- T. Liu, I.M.C. Lo, Influences of humic acid on Cr(VI) removal by
zero-valent iron from groundwater with various constituents:
implication for long-term PRB performance, Water, Air, Soil
Pollut., 216 (2011) 473–483.
- L. Yan, M. Liu, X. Hu, Removal of Cr(VI) in soil by chitosan
stabilized nanoscale zero iron, Nat. Sci. Ed., 22 (2016) 203–210.
- T. Mpouras, A. Polydera, D. Dermatas, N. Verdone, G. Vilardi,
Multi wall carbon nanotubes application for treatment of
Cr(VI)-contaminated groundwater; modeling of batch and
column experiments, Chemosphere, 269 (2021) 128749,
doi: 10.1016/j.chemosphere.2020.128749.
- H. Dong, J. Deng, Y. Xie, C. Zhang, Z. Jiang, Y. Cheng, K. Hou,
G. Zeng, Stabilization of nanoscale zero-valent iron (nZVI) with
modified biochar for Cr(VI) removal from aqueous solution,
J. Hazard. Mater., 332 (2017) 79–86.
- J. Liu, T. Mwamulima, Y. Wang, Y. Fang, S. Song, C. Peng,
Removal of Pb(II) and Cr(VI) from aqueous solutions using the
fly ash-based adsorbent material-supported zero-valent iron,
J. Mol. Liq., 243 (2017) 205–211.
- L. Wu, L. Liao, G. Lv, F. Qin, Y. He, X. Wang, Micro-electrolysis
of Cr(VI) in the nanoscale zero-valent iron loaded activated
carbon, J. Hazard. Mater., 254–255 (2013) 277–283.
- L. Liu, L. Liang, Y. Shi, X. Wang, K. Feng, S. Wang, Sulfidation
enhanced Cr(VI) reduction by zero-valent iron under different
environmental conditions: a mechanistic study, J. Agro-Environ.
Sci., 40 (2021) 1079–1087.
- M. Hou, H. Wan, T. Liu, Y. Fan, X. Liu, X. Wang, The effect
of different divalent cations on the reduction of hexavalent
chromium by zero-valent iron, Appl. Catal., B, 84 (2008)
170–175.
- H. Zhang, R. Xiao, R. Li, A. Ali, A. Chen, Z. Zhang, Enhanced
aqueous Cr(VI) removal using chitosan-modified magnetic
biochars derived from bamboo residues, Chemosphere,
261 (2020) 127694, doi: 10.1016/j.chemosphere.2020.127694.