References

  1. J. Vymazal, Removal of nutrients in constructed wetlands for wastewater treatment through plant harvesting – biomass and load matter the most, Ecol. Eng., 155 (2020) 105962, doi: 10.1016/j.ecoleng.2020.105962.
  2. Q. Wang, C. Hernández-Crespo, M. Santoni, S. Van Hulle, D.P.L. Rousseau, Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution?, Sci. Total Environ., 721 (2020) 137785, doi: 10.1016/j.scitotenv.2020.137785.
  3. S. Singh, S. Chakraborty, Zinc removal from highly acidic and sulfate-rich wastewater in horizontal sub-surface constructed wetland, Water Sci. Technol., 84 (2021) 3403–3414.
  4. C. Liu, Y. Liu, C. Feng, P. Wang, L. Yu, D. Liu, S. Sun, F. Wang, Distribution characteristics and potential risks of heavy metals and antimicrobial resistant Escherichia coli in dairy farm wastewater in Tai’an, China, Chemosphere, 262 (2021) 127768, doi: 10.1016/j.chemosphere.2020.127768.
  5. Z. Zeng, P. Zheng, D. Kang, Y. Li, W. Li, D. Xu, W. Chen, C. Pan, The removal of copper and zinc from swine wastewater by anaerobic biological-chemical process: performance and mechanism, J. Hazard. Mater., 401 (2021) 123767, doi: 10.1016/j. jhazmat.2020.123767.
  6. National Animal Husbandry Service, How to Scientifically Understand the Influence of the Trace Elements Copper and Zinc in Feed, 2020. Available at: https://www.piyao.org.cn/2020-12/15/c_1210932198.htm
  7. Y. Zhao, J.Q. Su, X.L. An, F.Y. Huang, C. Rensing, K.K. Brandt, Y.G. Zhu, Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut, Sci. Total Environ., 621 (2018) 1224–1232.
  8. J. Li, Y. Xu, L. Wang, F. Li, Heavy metal occurrence and risk assessment in dairy feeds and manures from the typical intensive dairy farms in China, Environ. Sci. Pollut. Res., 26 (2019) 6348–6358.
  9. Y. Xu, J. Li, Z. OU Yang, H. Zhang, Implications of feed mineral reduction and enhancement for China’s feed standards, Resour. Conserv. Recycl., 168 (2021) 105342, doi: 10.1016/j.resconrec.2020.105342.
  10. X. Chen, H. Lin, Y. Dong, B. Li, T. Yin, C. Liu, Simultaneous high-efficiency removal of sulfamethoxazole and zinc(II) from livestock and poultry breeding wastewater by a novel dualfunctional bacterium, Bacillus sp. SDB4, Environ. Sci. Pollut. Res. Int., 29 (2022) 6237–6250.
  11. J. Xu, G.H. Hao, Q. Jing, Y.Z. Zhai, Determination of Cu, Fe, Cr and Cd in wastewater from livestock and poultry farms, Agric. Environ. Dev., (2009) 74–75, 84.
  12. J. Zhang, Y. Wang, L. Ma, Y.L. Wen, S.Z. Chen, K.M. Yang, Z.J. Cai, Y.Q. Liao, Study on wastewater pollutant from planting and breeding recycled model, J. Southwest U Nationalities (Nat. Sci. Edit.), 37 (2011) 222–227.
  13. S.H. Ru, W.Q. Xu, S.Y. Sun, L.M. Hou, O.Y. Zhao, G.Y. Zhang, L. Wang, L. Liu, Distribution characteristics of nitrogen, phosphorus and heavy metals in intensive livestock and poultry wastewater in Hebei province, J. Hebei Agric. Sci., 25 (2021). 91–96.
  14. X. Liu, Y. Zhang, X. Li, C. Fu, T. Shi, P. Yan, Effects of influent nitrogen loads on nitrogen and COD removal in horizontal subsurface flow constructed wetlands during different growth periods of Phragmites australis, Sci. Total Environ., 635 (2018) 1360–1366.
  15. H. Xiang, X.Y. Yu, Toxic effect of copper pollution on water and hydrophyte, Hunan Agric. Sci., 11 (2009) 54–56 (in Chinese).
  16. X.F. Wang, The dangers of copper ions on the environment and research on countermeasure, Territory Nat. Resour. Stud., (2015) 55–57.
  17. B. Balen, M. Tkalec, S. Šikić, S. Tolić, P. Cvjetko, M. Pavlica, Ž. Vidaković-Cifrek, Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc, Ecotoxicology, 20 (2011) 815–826.
  18. M.R. Broadley, P.J. White, J.P. Hammond, I. Zelko, A. Lux, Zinc in plants, New Phytol., 173 (2007) 677–702.
  19. C.M. Palmer, M.L. Guerinot, Facing the challenges of Cu, Fe and Zn homeostasis in plants, Nat. Chem. Biol., 5 (2009) 333–340.
  20. J. Wang, The Study of the Rhizosphere Microorganisms of Poyang Lake Wetland Plant Under Zinc and Lead Stress, Master Thesis, Nanchang University, 2012 (in Chinese).
  21. M. Wu, Effect of ZNO-NPs on the Seedling Growth and Zn Absorption and Distribution of Different Plants, Master Thesis, Northwest A&F University, 2018 (in Chinese).
  22. A. Daverey, Y.C. Chen, S. Sung, J.G. Lin, Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification (SNAD) process, Bioresour. Technol., 165 (2014) 105–110.
  23. A. Galletti, P. Verlicchi, E. Ranieri, Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: contribution of vegetation and filling medium, Sci. Total Environ., 408 (2010) 5097–5105.
  24. X. Zhang, Z. Chen, Y. Zhou, Y. Ma, C. Ma, Y. Li, Y. Liang, J. Jia, Impacts of the heavy metals Cu(II), Zn(II) and Fe(II) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe(II) makes a difference, Sci. Total Environ., 648 (2019) 798–804.
  25. C.L. Madeira, J.C. de Araújo, Inhibition of anammox activity by municipal and industrial wastewater pollutants: a review, Sci. Total Environ., 799 (2021) 149449, doi: 10.1016/j. scitotenv.2021.149449.
  26. Y. Zhang, X. Liu, C. Fu, X. Li, B. Yan, T. Shi, Effect of Fe2+ addition on chemical oxygen demand and nitrogen removal in horizontal subsurface flow constructed wetlands, Chemosphere, 220 (2019) 259–265.
  27. G.F. Yang, W.M. Ni, K. Wu, H. Wang, B.E. Yang, X.Y. Jia, R.C. Jin, The effect of Cu(II) stress on the activity, performance and recovery on the anaerobic ammonium-oxidizing (Anammox) process, Chem. Eng. J., 226 (2013) 39–45.
  28. J. Vymazal, P. Krása, Distribution of Mn, Al, Cu and Zn in a constructed wetland receiving municipal sewage, Water Sci. Technol., 48 (2003) 299–305.
  29. A. Sobolewsky, A review of processes responsible for metal removal in wetlands treating contaminated mine drainage, Int. J. Phytorem., 1 (1999) 19–51.
  30. G. Du Laing, G. Van Ryckegem, F.M.G. Tack, M.G. Verloo, Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis, Chemosphere, 63 (2006) 1815–1823.
  31. X. Zhang, Y. Zhou, N. Zhang, K. Zheng, L. Wang, G. Han, H. Zhang, Short-term and long-term effects of Zn(II) on the microbial activity and sludge property of partial nitrification process, Bioresour. Technol., 228 (2017) 315–321.
  32. S. Gilch, O. Meyer, I. Schmidt, A soluble form of ammonia monooxygenase in Nitrosomonas europaea, Biol. Chem., 390 (2019) 863–873.
  33. S. Lee, K. Cho, J. Li, W. Kim, S. Hwang, Acclimation and activity of ammonia-oxidizing bacteria with respect to variations in zinc concentration, temperature, and microbial population, Bioresour. Technol., 102 (2011) 4196–4203.
  34. H. Zhu, B. Yan, Y. Xu, J. Guan, S. Liu, Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios, Ecol. Eng., 63 (2014) 58–63.
  35. Q. Guo, Z.J. Shi, J.L. Xu, C.C. Yang, M. Huang, M.L. Shi, R.C. Jin, Inhibition of the partial nitritation by roxithromycin and Cu(II), Bioresour. Technol., 214 (2016) 253–258.
  36. L.H. Madkour, Function of reactive oxygen species (ROS) inside the living organisms and sources of oxidants, Pharm. Sci. Anal. Res. J., 2 (2019) 180023.
  37. G.R. Rout, P. Das, Effect of metal toxicity on plant growth and metabolism: I. Zinc, Sustainable Agric., (2009) 873–884.
  38. M.L. Otte, C.C. Kearns, M.O. Doyle, Accumulation of arsenic and zinc in the rhizosphere of wetland plants, Bull. Environ. Contam. Toxicol., 55 (1995) 154–161.
  39. M. McBride, S. Sauve, W. Hendershot, Solubility control of Cu, Zn, Cd and Pb in contaminated soils, Eur. J. Soil Sci., 48 (1997) 337–346.
  40. X. Xu, G.L. Mills, Do constructed wetlands remove metals or increase metal bioavailability?, J. Environ. Manage., 218 (2018) 245–255.
  41. R.D. Hauck, Atmospheric Nitrogen Chemistry, Nitrification, Denitrification, and Their Relationships, O. Hutzinger, Ed., The Handbook of Environmental Chemistry, Vol. 1. Part C, The Natural Environment and Biogeochemical Cycles, Springer-Verlag, Berlin, 1984, pp. 105–127.
  42. I. Burth, J.C.G. Ottow, Influence of pH on the Production of N₂O and N₂ by Different Denitrifying Bacteria and Fusarium Solani, Ecological Bulletins, No. 35, Environmental Biogeochemistry, Oikos Editorial Office, 1983, pp. 207–215.
  43. A. Princic, I. Mahne, F. Megušar, E.A. Pau, J.M. Tiedje, Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater, Appl. Environ. Microbiol., 64 (1998) 3584–3590.
  44. H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution, Appl. Surf. Sci., 279 (2013) 432–440.
  45. J. Liang, Z. Yang, L. Tang, G. Zeng, M. Yu, X. Li, H. Wu, Y. Qian, X. Li, Y. Luo, Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost, Chemosphere, 181(2017) 281–288.