References

  1. D.X. Hu, C. Zhang, B. Ma, Z.C. Liu, X. Yang, L. Yang, The characteristics of rainfall runoff pollution and its driving factors in Northwest semiarid region of China - a case study of Xi’an, Sci. Total Environ., 726 (2020) 138384, doi: 10.1016/j.scitotenv.2020.138384.
  2. X.J. Zuo, D.F. Fu, H. Li, R.P. Singh, Distribution characteristics of pollutants and their mutual influence in highway runoff, Clean-Soil Air Water, 39 (2011) 956–963.
  3. W. Ahmed, K. Hamilton, S. Toze, S. Cook, D. Page, A review on microbial contaminants in stormwater runoff and outfalls: potential health risks and mitigation strategies, Sci. Total Environ., 692 (2019) 1304–1321.
  4. X.J. Zuo, P.C. Suo, Y. Li, Q.Q. Xu, Diversity and distribution of antibiotic resistance genes associated with road sediments transported in urban stormwater runoff, Environ. Pollut., 292 (2022) 118470, doi: 10.1016/j.envpol.2021.118470.
  5. W. Zhang, M. Sang, W. Che, H.C. Sun, Nutrient removal from urban stormwater runoff by an up-flow and
    mixed-flow bioretention system, Environ. Sci. Pollut. Res., 26 (2019) 17731–17739.
  6. H.W. Zhang, Z. Ahmad, Y.L. Shao, Z.H. Yang, Y.F. Jia, H. Zhong, Bioretention for removal of nitrogen: processes, operational conditions, and strategies for improvement, Environ. Sci. Pollut. Res., 28 (2021) 10519–10535.
  7. X.J. Zuo, Q.Q. Xu, Y. Li, K.F. Zhang, Antibiotic resistance genes removals in stormwater bioretention cells with three kinds of environmental conditions, J. Hazard. Mater., 429 (2022) 128336, doi: 10.1016/j.jhazmat.2022.128336.
  8. R.A. Tirpak, A.R.M.N. Afrooz, R.J. Winston, R. Valenca, K. Schiff, S.K. Mohanty, Conventional and amended bioretention soil media for targeted pollutant treatment: a critical review to guide the state of the practice, Water Res., 189 (2021) 116648, doi: 10.1016/j.watres.2020.116648.
  9. E.V. Lopez-Ponnada, T.J. Lynn, S.J. Ergas, J.R. Mihelcic, Longterm field performance of a conventional and modified bioretention system for removing dissolved nitrogen species in stormwater runoff, Water Res., 170 (2020) 115336, doi: 10.1016/j.watres.2019.115336.
  10. J.Q. Xiong, L.P. Liang, W.P. Shi, Z. Li, Z.N. Zhang, X.Q. Li, Application of biochar in modification of fillers in bioretention cells: a review, Ecol. Eng., 181 (2022) 106689, doi: 10.1016/j.ecoleng.2022.106689.
  11. B.K. Biswal, K. Vijayaraghavan, D.L. Tsen-Tieng, R. Balasubramanian, Biochar-based bioretention systems for removal of chemical and microbial pollutants from stormwater: a critical review, J. Hazard. Mater., 422 (2022) 126886, doi: 10.1016/j.jhazmat.2021.126886.
  12. A.Y.T. Lau, D.C.W. Tsang, N.J.D. Graham, Y.S. Ok, X. Yang, X.D. Li, Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater, Chemosphere, 169 (2017) 89–98.
  13. Z. Kong, Y.Q. Song, Z.Y. Zhao, H.X. Chai, Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions, Water Res., 206 (2021) 117737, doi: 10.1016/j.watres.2021.117737.
  14. Y. Qin, G. Li, Y. Gao, L. Zhang, Y.S. Ok, T. An, Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review, Water Res., 137 (2018) 130–143.
  15. K. Luo, Y. Pang, D.B. Wang, X. Li, L.P. Wang, M. Lei, A critical review on the application of biochar in environmental pollution remediation: role of persistent free radicals (PFRs), J. Environ. Sci., 108 (2021) 201–216.
  16. R.Z. Wang, D.L. Huang, Y.G. Liu, C. Zhang, C. Lai, X. Wang, Recent advances in biochar-based catalysts: properties, applications and mechanisms for pollution remediation, Chem. Eng., J. 371 (2019) 380–403.
  17. H.H. Lyu, Q.R. Zhang, B.X. Shen, Application of biochar and its composites in catalysis, Chemosphere, 240 (2019) 124842, doi: 10.1016/j.chemosphere.2019.124842.
  18. S.Y. Du, J.S. Francisco, S. Kais, Study of electronic structure and dynamics of interacting free radicals influenced by water, J. Chem. Phys., 130 (2009) 124312, doi: 10.1063/1.3100549.
  19. W.K. Huang, H.L. Ji, G. Gheysen, J. Debode, T. Kyndt, Biocharamended potting medium reduces the susceptibility of rice to root-knot nematode infections, BMC Plant Biol., 15 (2015) 267, doi: 10.1186/s12870-015-0654-7.
  20. Y.W. Sun, D. Zhang, Z.W. Wang, The potential of using biological nitrogen removal technique for stormwater treatment, Ecol. Eng., 106 (2017) 482–495.
  21. K.F. Zhang, Y.Z. Liu, A. Deletic, D.T. McCarthy, B.E. Hatt, E.G.I. Payne, G. Chandrasena, Y. Li, T. Pham, B. Jamali, E. Daly, T.D. Fletcher, A. Lintern, The impact of stormwater biofilter design and operational variables on nutrient removal - a statistical modelling approach, Water Res., 188 (2021) 116486, doi: 10.1016/j.watres.2020.116486.
  22. M.Y.A. Rahman, M.H. Nachabe, S.J. Ergas, Biochar amendment of stormwater bioretention systems for nitrogen and Escherichia coli removal: effect of hydraulic loading rates and antecedent dry periods, Bioresour. Technol., 310 (2020) 123428, doi: 10.1016/j.biortech.2020.123428.
  23. Y.Q. Sun, S.S. Chen, A.Y.T. Lau, D.C.W. Tsang, S.K. Mohanty, A. Bhatnagar, Waste-derived compost and biochar amendments for stormwater treatment in bioretention column: co-transport of metals and colloids, J. Hazard. Mater., 383 (2020) 121243, doi: 10.1016/j.jhazmat.2019.121243.
  24. S.K. Mohanty, A.B. Boehm, Escherichia coli removal in biocharaugmented biofilter: effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost, Environ. Sci. Technol., 48 (2014) 11535–11542.
  25. T.J. Lynn, D.H. Yeh, S.J. Ergas, Performance of denitrifying stormwater biofilters under intermittent conditions, Environ. Eng. Sci., 32 (2015) 796–805.
  26. J.Q. Xiong, J.J. Zhou, J.Q. Li, G.Q. Sun, X.C. Wang, S.X. An, Removal of nitrogen from rainwater runoff by bioretention cells filled with modified collapsible loess, Ecol. Eng., 158 (2020) 106065, doi: 10.1016/j.ecoleng.2020.106065.
  27. Y. Chen, Q.Y. Wu, Z. Liu, R.Y. Chen, Q.H. Cheng, S.C. Yuan, Nitrogen process in stormwater bioretention: effect of the antecedent dry days on the relative abundance of nitrogen functional genes, Water Sci. Technol., 86 (2022) 1269–1283.
  28. X.J. Zuo, H.S. Zhang, J.H. Yu, Microbial diversity for the improvement of nitrogen removals in stormwater bioretention cells with three aquatic plants, Chemosphere, 244 (2020) 125626, doi: 10.1016/j.chemosphere.2019.125626.
  29. X.J. Zuo, Z.Y. Guo, X. Wu, J.H. Yu, Diversity and metabolism effects of microorganisms in bioretention systems with sand, soil and fly ash, Sci. Total Environ., 676 (2019) 447–454.
  30. S.Y. Yoon, S.J. Kim, Y.K. Hong, S.H. Lee, G.H. Kim, Characteristics of OH* generation in pin-to-electrolyte discharges, IEEE Trans. Plasma Sci., 42 (2014) 2814–2815.
  31. F. Wang, H.K. Wang, C. Sun, Z. Yan, Conventional bioretention column with Fe-hydrochar for stormwater treatment: nitrogen removal, nitrogen behavior and microbial community analysis, Bioresour. Technol., 334 (2021) 125252, doi: 10.1016/j. biortech.2021.125252.
  32. E.S. Odinga, M.G. Waigi, F.O. Gudda, J. Wang, B. Yang, X.J. Hu, Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars, Environ. Int., 134 (2020) 105172, doi: 10.1016/j.envint.2019.105172.
  33. L.W. Chen, X.C. Li, J. Zhang, J.Y. Fang, Y.M. Huang, P. Wang, Production of hydroxyl radical via the activation of hydrogen peroxide by hydroxylamine, Environ. Sci. Technol., 49 (2015) 10373–10379.
  34. A.G. Donaghue, N. Morgan, L. Toran, E.R. McKenzie, The impact of bioretention column internal water storage underdrain height on denitrification under continuous and transient flow, Water Res., 214 (2022) 118205, doi: 10.1016/j.watres.2022.118205.
  35. J.K. Lee, K.L. Walker, H.S. Han, J. Kang, F.B. Prinz, R.M. Waymouth, Spontaneous generation of hydrogen peroxide from aqueous microdroplets, PNAS, 116 (2019) 19294–19298.
  36. S.T. Decezaro, D.B. Wolff, C. Pelissari, R.J.M.G. Ramirez, T.A. Formentini, J. Goerck, Influence of hydraulic loading rate and recirculation on oxygen transfer in a vertical flow constructed wetland, Sci. Total Environ., 668 (2019) 988–995.
  37. H. Jia, G. Nulaji, H. Gao, W. Fu, Y. Zhu, C. Wang, Formation and stabilization of environmentally persistent free radicals induced by the interaction of anthracene with Fe(III)-modified clays, Environ. Sci. Technol., 50 (2016) 6310–6319.
  38. U.G. Nwosu, A. Roy, A.L.N. dela Cruz, B. Dellinger, R. Cook, Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay, Environ. Sci. Processes Impacts, 18 (2016) 42–50.
  39. L.C. Soberg, M. Viklander, G.T. Blecken, Nitrogen removal in stormwater bioretention facilities: effects of drying, temperature and a submerged zone, Ecol. Eng., 169 (2021) 106302, doi: 10.1016/j.ecoleng.2021.106302.
  40. T. Alam, J.C. Bezares-Cruz, A. Mahmoud, K.D. Jones, Nutrients and solids removal in bioretention columns using recycled materials under intermittent and frequent flow operations, J. Environ. Manage., 297 (2021) 113321, doi: 10.1016/j. jenvman.2021.113321.
  41. F. Wang, C.S. Wang, Y.Y. Zheng, X.Y. Li, H.P. Qin, W. Ding, Estimating nitrogen fates and gross transformations in bioretention systems with applications of 15N labeling methods, Chemosphere, 270 (2021) 129462, doi: 10.1016/j.chemosphere.2020.129462.
  42. G.Z. Sun, Y.F. Zhu, T. Saeed, G.X. Zhang, X.G. Lu, Nitrogen removal and microbial community profiles in six wetland columns receiving high ammonia load, Chem. Eng. J., 203 (2012) 326–332.
  43. C. Corbella, M. Garfí, J. Puigagut, Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: surveying the optimal scenario for microbial fuel cell implementation, Sci. Total Environ., 470 (2014) 754–758.
  44. Y. Zinger, V. Prodanovic, K. Zhang, T.D. Fletcher, A. Deletic, The effect of intermittent drying and wetting stormwater cycles on the nutrient removal performances of two vegetated biofiltration designs, Chemosphere, 267 (2021) 129294, doi: 10.1016/j.chemosphere.2020.129294.
  45. A. Alvarez, J.M. Saez, J.S.D. Costa, V.L. Colin, M.S. Fuentes, S.A. Cuozzo, Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals, Chemosphere, 166 (2017) 41–62.
  46. A. Arshad, P.D. Martins, J. Frank, M.S.M. Jetten, H.J.M.O. den Camp, C.U. Welte, Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio, Environ. Microbiol., 19 (2017) 4965–4977.
  47. T. Kindaichi, S. Yuri, N. Ozaki, A. Ohashi, Ecophysiological role and function of uncultured chloroflexi in an anammox reactor, Water Sci. Technol., 66 (2012) 2556–2561.
  48. P. de Rozari, M. Greenway, A. El Hanandeh, Nitrogen removal from sewage and septage in constructed wetland mesocosms using sand media amended with biochar, Ecol. Eng., 111 (2018) 1–10.