References
- D.X. Hu, C. Zhang, B. Ma, Z.C. Liu, X. Yang, L. Yang, The
characteristics of rainfall runoff pollution and its driving
factors in Northwest semiarid region of China - a case study
of Xi’an, Sci. Total Environ., 726 (2020) 138384, doi: 10.1016/j.scitotenv.2020.138384.
- X.J. Zuo, D.F. Fu, H. Li, R.P. Singh, Distribution characteristics
of pollutants and their mutual influence in highway runoff,
Clean-Soil Air Water, 39 (2011) 956–963.
- W. Ahmed, K. Hamilton, S. Toze, S. Cook, D. Page, A review
on microbial contaminants in stormwater runoff and outfalls:
potential health risks and mitigation strategies, Sci. Total
Environ., 692 (2019) 1304–1321.
- X.J. Zuo, P.C. Suo, Y. Li, Q.Q. Xu, Diversity and distribution
of antibiotic resistance genes associated with road sediments
transported in urban stormwater runoff, Environ. Pollut.,
292 (2022) 118470, doi: 10.1016/j.envpol.2021.118470.
- W. Zhang, M. Sang, W. Che, H.C. Sun, Nutrient removal
from urban stormwater runoff by an up-flow and
mixed-flow bioretention system, Environ. Sci. Pollut. Res.,
26 (2019) 17731–17739.
- H.W. Zhang, Z. Ahmad, Y.L. Shao, Z.H. Yang, Y.F. Jia, H. Zhong,
Bioretention for removal of nitrogen: processes, operational
conditions, and strategies for improvement, Environ. Sci.
Pollut. Res., 28 (2021) 10519–10535.
- X.J. Zuo, Q.Q. Xu, Y. Li, K.F. Zhang, Antibiotic resistance genes
removals in stormwater bioretention cells with three kinds of
environmental conditions, J. Hazard. Mater., 429 (2022) 128336,
doi: 10.1016/j.jhazmat.2022.128336.
- R.A. Tirpak, A.R.M.N. Afrooz, R.J. Winston, R. Valenca, K. Schiff,
S.K. Mohanty, Conventional and amended bioretention soil
media for targeted pollutant treatment: a critical review to
guide the state of the practice, Water Res., 189 (2021) 116648,
doi: 10.1016/j.watres.2020.116648.
- E.V. Lopez-Ponnada, T.J. Lynn, S.J. Ergas, J.R. Mihelcic, Longterm
field performance of a conventional and modified
bioretention system for removing dissolved nitrogen species in
stormwater runoff, Water Res., 170 (2020) 115336, doi: 10.1016/j.watres.2019.115336.
- J.Q. Xiong, L.P. Liang, W.P. Shi, Z. Li, Z.N. Zhang, X.Q. Li,
Application of biochar in modification of fillers in bioretention
cells: a review, Ecol. Eng., 181 (2022) 106689, doi: 10.1016/j.ecoleng.2022.106689.
- B.K. Biswal, K. Vijayaraghavan, D.L. Tsen-Tieng, R. Balasubramanian,
Biochar-based bioretention systems for removal
of chemical and microbial pollutants from stormwater:
a critical review, J. Hazard. Mater., 422 (2022) 126886,
doi: 10.1016/j.jhazmat.2021.126886.
- A.Y.T. Lau, D.C.W. Tsang, N.J.D. Graham, Y.S. Ok, X. Yang,
X.D. Li, Surface-modified biochar in a bioretention system
for Escherichia coli removal from stormwater, Chemosphere,
169 (2017) 89–98.
- Z. Kong, Y.Q. Song, Z.Y. Zhao, H.X. Chai, Biochar-pyrite
bi-layer bioretention system for dissolved nutrient treatment
and by-product generation control under various stormwater
conditions, Water Res., 206 (2021) 117737, doi: 10.1016/j.watres.2021.117737.
- Y. Qin, G. Li, Y. Gao, L. Zhang, Y.S. Ok, T. An, Persistent free
radicals in carbon-based materials on transformation of
refractory organic contaminants (ROCs) in water: a critical
review, Water Res., 137 (2018) 130–143.
- K. Luo, Y. Pang, D.B. Wang, X. Li, L.P. Wang, M. Lei,
A critical review on the application of biochar in environmental
pollution remediation: role of persistent free radicals (PFRs),
J. Environ. Sci., 108 (2021) 201–216.
- R.Z. Wang, D.L. Huang, Y.G. Liu, C. Zhang, C. Lai, X. Wang,
Recent advances in biochar-based catalysts: properties,
applications and mechanisms for pollution remediation,
Chem. Eng., J. 371 (2019) 380–403.
- H.H. Lyu, Q.R. Zhang, B.X. Shen, Application of biochar and
its composites in catalysis, Chemosphere, 240 (2019) 124842,
doi: 10.1016/j.chemosphere.2019.124842.
- S.Y. Du, J.S. Francisco, S. Kais, Study of electronic structure
and dynamics of interacting free radicals influenced by water,
J. Chem. Phys., 130 (2009) 124312, doi: 10.1063/1.3100549.
- W.K. Huang, H.L. Ji, G. Gheysen, J. Debode, T. Kyndt, Biocharamended
potting medium reduces the susceptibility of rice to
root-knot nematode infections, BMC Plant Biol., 15 (2015) 267,
doi: 10.1186/s12870-015-0654-7.
- Y.W. Sun, D. Zhang, Z.W. Wang, The potential of using
biological nitrogen removal technique for stormwater
treatment, Ecol. Eng., 106 (2017) 482–495.
- K.F. Zhang, Y.Z. Liu, A. Deletic, D.T. McCarthy, B.E. Hatt,
E.G.I. Payne, G. Chandrasena, Y. Li, T. Pham, B. Jamali, E. Daly,
T.D. Fletcher, A. Lintern, The impact of stormwater biofilter
design and operational variables on nutrient removal - a
statistical modelling approach, Water Res., 188 (2021) 116486,
doi: 10.1016/j.watres.2020.116486.
- M.Y.A. Rahman, M.H. Nachabe, S.J. Ergas, Biochar amendment
of stormwater bioretention systems for nitrogen and
Escherichia coli removal: effect of hydraulic loading rates and
antecedent dry periods, Bioresour. Technol., 310 (2020) 123428,
doi: 10.1016/j.biortech.2020.123428.
- Y.Q. Sun, S.S. Chen, A.Y.T. Lau, D.C.W. Tsang, S.K. Mohanty,
A. Bhatnagar, Waste-derived compost and biochar amendments
for stormwater treatment in bioretention column: co-transport
of metals and colloids, J. Hazard. Mater., 383 (2020) 121243,
doi: 10.1016/j.jhazmat.2019.121243.
- S.K. Mohanty, A.B. Boehm, Escherichia coli removal in biocharaugmented
biofilter: effect of infiltration rate, initial bacterial
concentration, biochar particle size, and presence of compost,
Environ. Sci. Technol., 48 (2014) 11535–11542.
- T.J. Lynn, D.H. Yeh, S.J. Ergas, Performance of denitrifying
stormwater biofilters under intermittent conditions,
Environ. Eng. Sci., 32 (2015) 796–805.
- J.Q. Xiong, J.J. Zhou, J.Q. Li, G.Q. Sun, X.C. Wang, S.X. An,
Removal of nitrogen from rainwater runoff by bioretention
cells filled with modified collapsible loess, Ecol. Eng., 158 (2020)
106065, doi: 10.1016/j.ecoleng.2020.106065.
- Y. Chen, Q.Y. Wu, Z. Liu, R.Y. Chen, Q.H. Cheng, S.C. Yuan,
Nitrogen process in stormwater bioretention: effect of the
antecedent dry days on the relative abundance of nitrogen
functional genes, Water Sci. Technol., 86 (2022) 1269–1283.
- X.J. Zuo, H.S. Zhang, J.H. Yu, Microbial diversity for the
improvement of nitrogen removals in stormwater bioretention
cells with three aquatic plants, Chemosphere, 244 (2020) 125626,
doi: 10.1016/j.chemosphere.2019.125626.
- X.J. Zuo, Z.Y. Guo, X. Wu, J.H. Yu, Diversity and metabolism
effects of microorganisms in bioretention systems with sand,
soil and fly ash, Sci. Total Environ., 676 (2019) 447–454.
- S.Y. Yoon, S.J. Kim, Y.K. Hong, S.H. Lee, G.H. Kim, Characteristics
of OH* generation in pin-to-electrolyte discharges, IEEE Trans.
Plasma Sci., 42 (2014) 2814–2815.
- F. Wang, H.K. Wang, C. Sun, Z. Yan, Conventional bioretention
column with Fe-hydrochar for stormwater treatment: nitrogen
removal, nitrogen behavior and microbial community
analysis, Bioresour. Technol., 334 (2021) 125252, doi: 10.1016/j.
biortech.2021.125252.
- E.S. Odinga, M.G. Waigi, F.O. Gudda, J. Wang, B. Yang,
X.J. Hu, Occurrence, formation, environmental fate and risks of
environmentally persistent free radicals in biochars, Environ.
Int., 134 (2020) 105172, doi: 10.1016/j.envint.2019.105172.
- L.W. Chen, X.C. Li, J. Zhang, J.Y. Fang, Y.M. Huang, P. Wang,
Production of hydroxyl radical via the activation of hydrogen
peroxide by hydroxylamine, Environ. Sci. Technol., 49 (2015)
10373–10379.
- A.G. Donaghue, N. Morgan, L. Toran, E.R. McKenzie,
The impact of bioretention column internal water storage
underdrain height on denitrification under continuous and
transient flow, Water Res., 214 (2022) 118205, doi: 10.1016/j.watres.2022.118205.
- J.K. Lee, K.L. Walker, H.S. Han, J. Kang, F.B. Prinz, R.M. Waymouth,
Spontaneous generation of hydrogen peroxide from
aqueous microdroplets, PNAS, 116 (2019) 19294–19298.
- S.T. Decezaro, D.B. Wolff, C. Pelissari, R.J.M.G. Ramirez,
T.A. Formentini, J. Goerck, Influence of hydraulic loading
rate and recirculation on oxygen transfer in a vertical flow
constructed wetland, Sci. Total Environ., 668 (2019) 988–995.
- H. Jia, G. Nulaji, H. Gao, W. Fu, Y. Zhu, C. Wang, Formation
and stabilization of environmentally persistent free radicals
induced by the interaction of anthracene with Fe(III)-modified
clays, Environ. Sci. Technol., 50 (2016) 6310–6319.
- U.G. Nwosu, A. Roy, A.L.N. dela Cruz, B. Dellinger, R. Cook,
Formation of environmentally persistent free radical (EPFR)
in iron(III) cation-exchanged smectite clay, Environ. Sci.
Processes Impacts, 18 (2016) 42–50.
- L.C. Soberg, M. Viklander, G.T. Blecken, Nitrogen removal
in stormwater bioretention facilities: effects of drying,
temperature and a submerged zone, Ecol. Eng., 169 (2021)
106302, doi: 10.1016/j.ecoleng.2021.106302.
- T. Alam, J.C. Bezares-Cruz, A. Mahmoud, K.D. Jones, Nutrients
and solids removal in bioretention columns using recycled
materials under intermittent and frequent flow operations,
J. Environ. Manage., 297 (2021) 113321, doi: 10.1016/j.
jenvman.2021.113321.
- F. Wang, C.S. Wang, Y.Y. Zheng, X.Y. Li, H.P. Qin, W. Ding,
Estimating nitrogen fates and gross transformations in
bioretention systems with applications of 15N labeling
methods, Chemosphere, 270 (2021) 129462, doi: 10.1016/j.chemosphere.2020.129462.
- G.Z. Sun, Y.F. Zhu, T. Saeed, G.X. Zhang, X.G. Lu, Nitrogen
removal and microbial community profiles in six wetland
columns receiving high ammonia load, Chem. Eng. J.,
203 (2012) 326–332.
- C. Corbella, M. Garfí, J. Puigagut, Vertical redox profiles
in treatment wetlands as function of hydraulic regime and
macrophytes presence: surveying the optimal scenario
for microbial fuel cell implementation, Sci. Total Environ.,
470 (2014) 754–758.
- Y. Zinger, V. Prodanovic, K. Zhang, T.D. Fletcher, A. Deletic,
The effect of intermittent drying and wetting stormwater
cycles on the nutrient removal performances of two vegetated
biofiltration designs, Chemosphere, 267 (2021) 129294,
doi: 10.1016/j.chemosphere.2020.129294.
- A. Alvarez, J.M. Saez, J.S.D. Costa, V.L. Colin, M.S. Fuentes,
S.A. Cuozzo, Actinobacteria: current research and perspectives
for bioremediation of pesticides and heavy metals,
Chemosphere, 166 (2017) 41–62.
- A. Arshad, P.D. Martins, J. Frank, M.S.M. Jetten, H.J.M.O. den
Camp, C.U. Welte, Mimicking microbial interactions under
nitrate-reducing conditions in an anoxic bioreactor:
enrichment of novel Nitrospirae bacteria distantly related to
Thermodesulfovibrio, Environ. Microbiol., 19 (2017) 4965–4977.
- T. Kindaichi, S. Yuri, N. Ozaki, A. Ohashi, Ecophysiological
role and function of uncultured chloroflexi in an anammox
reactor, Water Sci. Technol., 66 (2012) 2556–2561.
- P. de Rozari, M. Greenway, A. El Hanandeh, Nitrogen removal
from sewage and septage in constructed wetland mesocosms
using sand media amended with biochar, Ecol. Eng., 111 (2018)
1–10.