References
- A. Maleki, Z. Hajizadeh, V. Sharifi, Z. Emdadi, A green, porous
and eco-friendly magnetic geopolymer adsorbent for heavy
metals removal from aqueous solutions, J. Cleaner Prod.,
215 (2019) 1233–1245.
- F. Gouny, F. Fouchal, O. Pop, P. Maillard, S. Rossignol,
Mechanical behavior of an assembly of
wood-geopolymerearth
bricks, Constr. Build. Mater., 38 (2013) 110–118.
- X. Guo, H. Shi, W.A. Dick, Compressive strength and
microstructural characteristics of class C fly ash geopolymer,
Cem. Concr. Compos., 32 (2010) 142–147.
- Y. Li, X. Zeng, Y. Liu, S. Yan, Z. Hu, Y. Ni, Study on the treatment
of copper-electroplating wastewater by chemical trapping and
flocculation, Sep. Purif. Technol., 31 (2003) 91–95.
- M. Eloussaief, I. Jarraya, M. Benzina: Adsorption of copper
ions on two clays from Tunisia: pH and temperature effects,.
Appl. Clay Sci., 46 (2009) 409–413.
- N. Hamdi, I. Ben Messaoud, E. Srasra, Production of geopolymer
binders using clay minerals and industrial wastes, C.R. Chim.,
22 (2019) 220–226.
- X. Feng, S. Yan, S. Jiang, K. Huang, X. Ren, X. Du, P. Xing,
Green synthesis of the metakaolin/slag based geopolymer for
the effective removal of methylene blue and Pb(II), Silicon,
14 (2022) 6965–6979.
- F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Silica-based
mesoporous organic–inorganic hybrid materials, Angew.
Chem. Int. Ed., 45 (2006) 3216–3251.
- Breck, D.W. Zeolite, Molecular Sieves: Structure, Chemistry and
Use, Wiley, New York, NY, USA, 1974.
- B. Liguori, P. Aprea, G. Roviello, C. Ferone, Self-supporting
zeolites by geopolymer gel conversion, Microporous
Mesoporous Mater., 286 (2019) 125–132.
- C. Bai, G. Franchin, H. Elsayed, A. Zaggia, L. Conte, H. Li,
P. Colombo, High-porosity geopolymer foams with tailored
porosity for thermal insulation and wastewater treatment,
J. Mater. Res., 32 (2017) 3251–3259.
- Q. Tang, Y.-y. Ge, K.-t. Wang, Y. He, X.-m. Cui, Preparation and
characterization of porous metakaolin-based inorganic polymer
spheres as an adsorbent, Mater Des., 88 (2015) 1244–1249.
- J. Rahimi, R. Taheri-Ledari, M. Niksefat A. Maleki, Enhanced
reduction of nitrobenzene derivatives: effective strategy
executed by Fe3O4/PVA-10%Ag as a versatile hybrid
nanocatalyst, Catal. Commun., 134 (2020) 105850, doi: 10.1016/j.
catcom.2019.105850.
- A. Maleki, M. Mohammad, Z. Emdadi, N. Asim, M. Azizi,
J. Safaei, Adsorbent materials based on a geopolymer paste
for dye removal from aqueous solutions, Arabian J. Chem.,
13 (2020) 3017–3025.
- C. Thormark, Conservation of energy and natural resources by
recycling building waste, Resour. Conserv. Recycl., 33 (2001)
113–130.
- I. Ben Messaoud, N. Hamdi, E. Srasra, Physicochemical
properties of geopolymer binders made from Tunisian clay,
Mater. Focus, 7 (2018) 114–120
- E. Tiffo, A. Elimbi, J.D. Manga, A.B. Tchamba, Red ceramics
produced from mixtures of kaolinite clay and waste glass,
Braz. J. Sci. Technol., 2 (2015), doi: 10.1186/s40552-015-0009-9.
- C. Chen, Q. Li, L. Shen, J. Zhai, Feasibility of manufacturing
geopolymer bricks using circulating fluidized bed combustion
bottom ash, Environ. Technol., 33 (2012) 1313–1321.
- B.K.S.S. Langergren, Zurtheorie der sogenannten adsorption
geloesterstoffe, Veternskapsakad Handlingar, 24 (1898) 1–39.
- Y.S. Ho, G. McKay, The sorption of lead(II) ions on peat,
Water Res., 33 (1999) 578–584.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1367.
- H.M.F. Freundlich, Uber die adsorption in losungen, Z. Phys.
Chem., 57 (1906) 385–470.
- M. Jin, Z. Zheng, Y. Sun, L. Chen, Z. Jin, Resistance of
metakaolin-MSWI fly ash based geopolymer to acid and
alkaline environments, J. Non-Cryst. Solids, 450 (2016) 116–122.
- N. Hui-Teng, H. Cheng-Yong, L. Yun-Ming, M.M.A.B. Abdullah,
K. Ern Hun, H.M. Razi, N. Yong-Sing, Formulation, mechanical
properties and phase analysis of fly ash geopolymer with ladle
furnace slag replacement, J. Mater. Res. Technol., 12 (2021)
1212–1226.
- A. Samant, B. Nayak, P.K. Misra, Kinetics, and mechanistic
interpretation of fluoride removal by nanocrystalline hydroxyl
apatite derived from Limacine artica shells, J. Environ. Chem.
Eng., 5 (2017) 5429–5438.
- U. Ghani, S. Hussain, Noor-ul-Amin, M. Imtiaz, S. Ali Khan,
Laterite clay-based geopolymer as a potential adsorbent for the
heavy metals removal from aqueous solutions, J. Saudi Chem.
Soc., 24 (2020) 874–884.
- S. Wang, L. Li, Z. Zhu, Solid-state conversion of fly ash
to effective adsorbents for Cu removal from wastewater,
J. Hazard. Mater., 139 (2007) 254–259.
- Y. Ge, X. Cui, C. Liao, Z. Li, Facile fabrication of green
geopolymer/alginate hybrid spheres for efficient removal
of Cu(II) in water: batch and column studies, Chem. Eng. J.,
311 (2017) 126–134.
- A. Purbasari, I. Istadi, A. Kumoro, I. Sumantri, S. Silviana,
Geopolymer from metakaolin and biomass ash for Cu(II) ions
adsorption from aqueous solutions: kinetics and isotherm
studies, J. Chem. Technol. Metall., 56 (2021) 1225–1233.
- A. Singhal, B.P. Gangwar, J.M. Gayathry, CTAB modified large
surface area nanoporous geopolymer with high adsorption
capacity for copper ion removal, Appl. Clay Sci., 150 (2017)
106–114.
- Z. Ma, R. Xue, J.S. Li, Y. Zhao, S.P. Chi, Use of thermally
modified waste concrete powder for removal of Pb(II) from
wastewater: effects and mechanism, Environ. Pollut., 277 (2021)
116776, doi: 10.1016/j.envpol.2021.116776.
- C. Yan, L. Guo, D. Ren, P. Duan, Novel composites based on
geopolymer for removal of Pb(II), Mater. Lett., 239 (2019)
192–195.