References
- A.Y. Li, H. Deng, Y.H. Jiang, C.H. Ye, B.G. Yu, X.L. Zhou,
A.Y. Ma, Superefficient removal of heavy metals from
wastewater by Mg-loaded biochars: adsorption characteristics
and removal mechanisms, Langmuir, 36 (2020) 9160–9174.
- M.H. Dehghani, M. Sarmadi, M.R. Alipour, D. Sanaei,
H. Abdolmaleki, S. Agarwal, V.K. Gupta, Investigating the
equilibrium and adsorption kinetics for the removal of Ni(II)
ions from aqueous solutions using adsorbents prepared from
the modified waste newspapers: a low-cost and available
adsorbent, Microchem. J., 146 (2019) 1043–1053.
- A. Ma, A. Abushaikha, S.J. Allen, G. McKay, Ion exchange
homogeneous surface diffusion modelling by binary site resin
for the removal of nickel ions from wastewater in fixed beds,
Chem. Eng. J., 358 (2019) 1–10.
- W. Yin, C. Zhao, J. Xu, J. Zhang, Z. Guo, Y. Shao, Removal
of Cd(II) and Ni(II) from aqueous solutions using activated
carbon developed from powder-hydrolyzed-feathers and
Trapa natans husks, Colloids Surf., A, 560 (2019) 426–433.
- J. Štefelová, T. Zelenka, V. Slovák, Biosorption (removing) of
Cd(II), Cu(II) and methylene blue using biochar produced by
different pyrolysis conditions of beech and spruce sawdust,
Wood Sci. Technol., 51 (2017) 1321–1338.
- A. Muhmood, J. Lu, R. Kadam, R. Dong, J. Guo, S. Wu, Biochar
seeding promotes struvite formation, but accelerates heavy
metal accumulation, Sci. Total Environ., 652 (2019) 623–632.
- A. Ngigi, Y.S. Ok, S. Thiele-Bruhn, Biochar-mediated sorption of
antibiotics in pig manure, J. Hazard. Mater., 364 (2019) 663–670.
- S.-Y. Oh, Y.-D. Seo, K.-S. Ryu, Reductive removal of
2,4-dinitrotoluene and 2,4-dichlorophenol with zero-valent
iron-included biochar, Bioresour. Technol., 216 (2016) 1014–1021.
- C. Fan, C. Guo, Y. Zeng, Z. Tu, Y. Ji, J.R. Reinfelder, M. Chen,
W. Huang, G. Lu, X. Yi, The behavior of chromium and arsenic
associated with redox transformation of schwertmannite in
AMD environment, Chemosphere, 222 (2019) 945–953.
- J. Zhu, M. Gan, D. Zhang, Y. Hu, L. Chai, The nature of
Schwertmannite and jarosite mediated by two strains of
Acidithiobacillus ferrooxidans with different ferrous oxidation
ability, Mater. Sci. Eng., C, 33 (2013) 2679–2685.
- J.M. Bigham, U. Schwertmann, S.J. Traina, R.L. Winland,
M. Wolf, Schwertmannite and the chemical modeling of iron
in acid sulfate waters, Geochim. Cosmochim. Acta, 60 (1996)
2111–2121.
- S. Regenspurg, A. Brand, S. Peiffer, Formation and stability of
schwertmannite in acidic mining lakes, Geochim. Cosmochim.
Acta, 68 (2004) 1185–1197.
- X. Meng, C. Zhang, J. Zhuang, G. Zheng, L. Zhou, Assessment
of schwertmannite, jarosite and goethite as adsorbents
for efficient adsorption of phenanthrene in water and the
regeneration of spent adsorbents by heterogeneous Fenton-like
reaction, Chemosphere, 244 (2020) 125523,
doi: 10.1016/j.chemosphere.2019.125523.
- K. Rout, M. Mohapatra, S. Anand, 2-Line ferrihydrite: synthesis,
characterization and its adsorption behaviour for removal
of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions,
Dalton Trans., 41 (2012) 3302–3312.
- Y. Mamindy-Pajany, C. Hurel, N. Marmier, M. Roméo, Arsenic
adsorption onto hematite and goethite, C.R. Chim., 12 (2009)
876–881.
- L.-Y. Gao, J.-H. Deng, G.-F. Huang, K. Li, K.-Z. Cai, Y. Liu,
F. Huang, Relative distribution of Cd2+ adsorption mechanisms
on biochars derived from rice straw and sewage sludge,
Bioresour. Technol., 272 (2019) 114–122.
- M.F. Hamza, Y. Wei, H. Mira, A.-H. Adel, E. Guibal, Synthesis
and adsorption characteristics of grafted hydrazinyl amine
magnetite-chitosan for Ni(II) and Pb(II) recovery, Chem. Eng. J.,
362 (2019) 310–324.
- J. Jönsson, P. Persson, S. Sjöberg, L. Lövgren, Schwertmannite
precipitated from acid mine drainage: phase transformation,
sulphate release and surface properties, Appl. Geochem.,
20 (2005) 179–191.
- M. Loan, W. Richmond, G. Parkinson, On the crystal growth
of nanoscale schwertmannite, J. Cryst. Growth, 275 (2005)
e1875–e1881.
- Y. Feng, Q. Liu, Y. Yu, Q. Kong, L.-l. Zhou, Y.-d. Du, X.-f. Wang,
Norfloxacin removal from aqueous solution using biochar
derived from luffa sponge, J. Water Supply Res. Technol. AQUA,
67 (2018) 703–714.
- S. Tresintsi, K. Simeonidis, G. Vourlias, G. Stavropoulos,
M. Mitrakas, Kilogram-scale synthesis of iron oxy-hydroxides
with improved arsenic removal capacity: study of Fe(II)
oxidation—precipitation parameters, Water Res., 46 (2012)
5255–5267.
- L. Albanese, S. Baronti, F. Liguori, F. Meneguzzo, P. Barbaro,
F.P. Vaccari, Hydrodynamic cavitation as an energy efficient
process to increase biochar surface area and porosity: a case
study, J. Cleaner Prod., 210 (2019) 159–169.
- M. Mansouri, M. Nademi, M. Ebrahim Olya, H. Lotfi, Study
of methyl tert-butyl ether (MTBE) photocatalytic degradation
with UV/TiO2-ZnO-CuO nanoparticles, J. Chem. Health Risks,
7 (2017) 19–32.
- G. Marbán, BET adsorption reaction model based on the
pseudo steady-state hypothesis for describing the kinetics of
adsorption in liquid phase, J. Colloid Interface Sci., 467 (2016)
170–179.
- G. Meng, A. Li, W. Yang, F. Liu, X. Yang, Q. Zhang, Mechanism of
oxidative reaction in the post crosslinking of hyper-crosslinked
polymers, Eur. Polym. J., 43 (2007) 2732–2737.
- M.K. Aroua, S. Leong, L. Teo, C.Y. Yin, W.M.A.W. Daud, Realtime
determination of kinetics of adsorption of lead(II) onto
palm shell-based activated carbon using ion selective electrode,
Bioresour. Technol., 99 (2008) 5786–5792.
- P. Chingombe, B. Saha, R. Wakeman, Sorption of atrazine on
conventional and surface modified activated carbons, J. Colloid
Interface Sci., 302 (2006) 408–416.
- A.W. Marczewski, Analysis of kinetic Langmuir model. Part I:
integrated kinetic Langmuir equation (IKL): a new complete
analytical solution of the Langmuir rate equation, Langmuir,
26 (2010) 15229–15238.
- H. Qiu, M.G. Vijver, E. He, W.J. Peijnenburg, Predicting copper
toxicity to different earthworm species using a multicomponent
Freundlich model, Environ. Sci. Technol., 47 (2013) 4796–4803.
- X.Q. Meng, C.M. Zhang, J. Zhuang, G.Y. Zheng, L.X. Zhou,
Assessment of schwertmannite, jarosite and goethite as
adsorbents for efficient adsorption of phenanthrene in water
and the regeneration of spent adsorbents by heterogeneous
Fenton-like reaction, Chemosphere, 244 (2020) 125523,
doi: 10.1016/j.chemosphere.2019.125523.
- J. Yu, J. Zhang, S. Song, H. Liu, Z. Guo, C. Zhang, Removal
of Ni(II) from aqueous solutions using activated carbon with
manganese formate hydrate in-situ modification, Colloids
Surf., A, 560 (2019) 84–91.
- Y. Kang, Z. Guo, J. Zhang, H. Xie, H. Liu, C. Zhang, Enhancement
of Ni(II) removal by urea-modified activated carbon derived
from Pennisetum alopecuroides with phosphoric acid activation,
J. Taiwan Inst. Chem. Eng., 60 (2016) 335–341.
- Y. Liu, S.P. Sohi, S. Liu, J. Guan, J. Zhou, J. Chen, Adsorption
and reductive degradation of Cr(VI) and TCE by a simply
synthesized zero valent iron magnetic biochar, J. Environ.
Manage., 235 (2019) 276–281.
- M. Li, H. Liu, T. Chen, C. Dong, Y. Sun, Synthesis of magnetic
biochar composites for enhanced uranium(VI) adsorption,
Sci. Total Environ., 651 (2019) 1020–1028.