References

  1. Y. Wang, X. Gu, J. Quan, G. Xing, L. Yang, Ch. Zhao, P. Wu, F. Zhao, B. Hu, Y. Hu, Application of magnetic fields to wastewater treatment and its mechanisms: a review, Sci. Total Environ., 773 (2021) 145476, doi: 10.1016/j.scitotenv.2021.145476.
  2. E. Gogina, I. Gulshin, Characteristics of low-oxygen oxidation ditch with improved nitrogen removal, Water, 13 (2021) 3603, doi: 10.3390/w13243603.
  3. Y. Qiu, C. Zhang, B. Li, J. Li, X. Zhang, Y. Liu, P. Liang, X. Huang, Optimal surface aeration control in full-scale oxidation ditches through energy consumption analysis, Water, 10 (2018) 945, doi: 10.3390/w10070945.
  4. L. Metcalf, H.P. Eddy, Wastewater Engineering: Treatment and Reuse, 4th ed., McGraw-Hill, New York, 2003.
  5. X. Hao, H.J. Doddema, J.W. van Groenestijn, Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch, Bioresour. Technol., 59 (1997) 207–215.
  6. H.-D. Park, J.M. Regan, D.R. Noguera, Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic Orbal processes, Water Sci. Technol., 46 (2002) 273–280.
  7. R.J.L.C. Drews, A.M. Greeff, Nitrogen elimination by rapid alternation of aerobic/“anoxic” conditions in “Orbal” activated sludge plants, Water Res., 7 (1973) 1183–1194.
  8. X. Zhou, X. Guo, Y. Han, J. Liu, J. Ren, Y. Wang, Y. Guo, Enhancing nitrogen removal in an Orbal oxidation ditch by optimization of oxygen supply: practice in a full-scale municipal wastewater treatment plant, Bioprocess. Biosyst. Eng., 35 (2012) 1097–1105.
  9. Q. Yong, Z. Chi, L. Bing, L. Ji, Z. Xiaoyuan, L. Yanchen, L. Peng, H. Xia, Optimal surface aeration control in full-scale oxidation ditches through energy consumption analysis, Water, 10 (2018) 945, doi: 10.3390/w10070945.
  10. X. Wang, T. Chen, P. Jin, A. Zhang, C. Gao, X. Qi, Y. Zhang, Enhanced total nitrogen removal performance in a full scale Orbal oxidation ditch by a novel step aeration mode, Bioresour. Technol., 294 (2019) 122228, doi: 10.1016/j.biortech.2019. 122228.
  11. X. Wang, C. Gao, P. Jin, Y. Zhang, Y. Xie, T. Chen, A. Zhang, Nitrogen removal performance and bacterial community in a full-scale modified Orbal oxidation ditch with internal nitrate recycle and biocarriers, J. Water Process Eng., 40 (2021) 101791, doi: 10.1016/j.jwpe.2020.101791.
  12. N. Syamimi Zaidi, J. Sohaili, K. Muda, M. Sillanpää, Magnetic field application and its potential in water and wastewater treatment systems, Sep. Purif. Rev., 43 (2014) 206–240.
  13. Q. Cao, X. Li, H. Jiang, H. Wu, Z. Xie, X. Zhang, N. Li, X. Huang, Z. Li, X. Liu, D. Li, Ammonia removal through combined methane oxidation and nitrification-denitrification and the interactions among functional microorganisms, Water Res., 188 (2021) 116555, doi: 10.1016/j.watres.2020.116555.
  14. K.C.D. Agbewornu, T.M. Adyel, J. Zhai, Optimizing nitrogen removal in a hybrid oxidation ditch, J. Environ. Chem. Eng., 9 (2021) 105443, doi: 10.1016/j.jece.2021.105443.
  15. C. Yao, H.-Y. Lei, Q. Yu, S.-P. Li, H.-L. Li, K. Chen, X.-H. Zhang, Application of magnetic enhanced bio-effect on nitrification: a comparative study of magnetic and non-magnetic carriers, Water Sci. Technol., 67 (2013) 1280–1287.
  16. Z.M. Liu, Z. Liang, S.G. Wu, F. Liu, Treatment of municipal wastewater by a magnetic activated sludge device, Desal. Water Treat., 53 (2015) 909–918.
  17. Y. Liu, J. Li, W. Guo, H. Ngo, J. Hu, M.T. Gao, Use of magnetic powder to effectively improve the performance of sequencing batch reactors (SBRs) in municipal wastewater treatment, Bioresour. Technol., 148 (2017) 135–139.
  18. Y. Ji, Y. Wang, J. Sun, T. Yan, J. Li, T. Zhao, X. Yin, C. Sun, Enhancement of biological treatment of wastewater by magnetic field, Bioresour. Technol., 101 (2010) 8535–8540.
  19. J.L. Zilles, J. Peccia, D.R. Noguera, Microbiology of enhanced biological phosphorus removal in aerated—anoxic Orbal processes, Water Environ. Res., 74 (2002) 428–436.
  20. S.Y. Gao, Y.Z. Peng, S.Y. Wang, J. Yan, Novel strategy of nitrogen removal from domestic wastewater using pilot Orbal oxidation ditch, J. Environ. Sci., 18 (2006) 833–839.
  21. L. Lin, G. Min, L. Junxin, Distribution characterization of microbial aerosols emitted from a wastewater treatment plant using the Orbal oxidation ditch process, Process Biochem., 46 (2011) 910–915.
  22. X. Wang, T. Chen, P. Jin, A. Zhang, C. Gao, X. Qi, Y. Zhang, Enhanced total nitrogen removal performance in a full scale Orbal oxidation ditch by a novel step aeration mode, Bioresour. Technol., 294 (2019) 122228, doi: 10.1016/j.biortech.2019.122228.
  23. Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Water Works Association, Washington D.C., USA, 2017.
  24. M. Zielinski, P. Rusanowska, M. Debowski, A. Hajduk, Influence of static magnetic field on sludge properties, Sci. Total Environ., 625 (2018) 738–742.
  25. X.H. Wang, M.H. Diao, Y. Yang, Y.J. Shi, M.M. Gao, S.G. Wang, Enhanced aerobic nitrifying granulation by static magnetic field, Bioresour. Technol., 110 (2012) 105–110.
  26. N. Gokon, A. Shimada, H. Kaneko, Y. Tamaura, K. Ito, T. Ohara, Magnetic coagulation and reaction rate for the aqueous ferrite formation reaction, J. Magn. Magn. Mater., 238 (2002) 47–55.
  27. J. Ma, Y. Ma, F. Yu, A novel one-pot route for large-scale synthesis of novel magnetic CNTs/Fe@C hybrids and their applications for binary dye removal, ACS Sustainable Chem. Eng., 6 (2018) 8178–8191.
  28. L. Tan, Y.F Shao, G.D. Mu, S.X. Ning, S.N. Shi, Enhanced azo dye biodegradation performance and halotolerance of Candida tropicalis SYF-1 by static magnetic field (SMF), Bioresour. Technol., 295 (2020) 122283, doi: 10.1016/j.biortech.2019.122283.
  29. Q. Hu, R.P. Joshi, D. Miklavcic, Calculations of cell transmembrane voltage induced by time-varying magnetic fields, IEEE Trans. Plasma Sci., 48 (2020) 1088–1095.
  30. M. Łebkowska, A. Rutkowska-Narozniak, E. Pajor, A. Tabernacka, M. Załęska-Radziwiłł, Impact of a static magnetic field on biodegradation of wastewater compounds and bacteria recombination, Environ. Sci. Pollut. Res., 25 (2018) 22571–22583.
  31. F.C. Fraga, A. Valério, V.A. de Oliveira, M. di Luccio, D. de Oliveira, Effect of magnetic field on the Eversa® Transform 2.0 enzyme: enzymatic activity and structural conformation, Int. J. Biol. Macromol., 122 (2019) 653–658.
  32. P. Logeshwaran, K. Krishnan, R. Naidu, M. Megharaj, Purification and characterization of a novel fenamiphos hydrolysing enzyme from Microbacterium esteraromaticum MM1, Chemosphere, 252 (2020) 126549, doi: 10.1016/j.chemosphere.2020.126549.
  33. A. Wasak, R. Drozd, D. Jankowiak, R. Rakoczy, Rotating magnetic field as tool for enhancing enzymes properties - laccase case study, Sci. Rep., 9 (2019) 3707, doi: 10.1038/s41598-019-39198-y.
  34. U.G. Letuta, V.L. Berdinskiy, Biological effects of static magnetic fields and zinc isotopeson E. coli bacteria, Bioelectromagnetics, 40 (2019) 62–73.
  35. C. Ying, K. Umetsu, Y. Sakai, I. Ihara, T. Yamashiro, Milking parlour wastewater treatment by magnetic activated sludge process, S.A.S.J., 39 (2009) 1–6.
  36. Y.J. Wu, L.M. Whang, M.Y. Chang, T. Fukushima, Y.C. Lee, S.S. Cheng, S.F. Hsu, C.H. Chang, W. Shen, C.Y. Yang, R. Fu, Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin transistor liquid crystal display wastewater, Bioresour. Technol., 141 (2013) 35–40.
  37. M. Kumar, P.Y. Lee, T. Fukusihma, L.M. Whang, J.G. Lin, Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR, Bioresour. Technol., 113 (2012) 148–153.
  38. S.Q. Ni, J. Ni, N. Yang, J. Wang, Effect of magnetic nanoparticles on the performance of activated sludge treatment system, Bioresour. Technol., 143 (2013) 555–561.