References

  1. G.Y. Jiang, H.D. Li, M. Xu, H.M. Ruan, Sustainable reverse osmosis, electrodialysis and bipolar membrane electrodialysis application for cold-rolling wastewater treatment in the steel industry, J. Water Process Eng., 40 (2021) 101968, doi: 10.1016/j. jwpe.2021.101968.
  2. A. Campione, L. Gurreri, M. Ciofalo, A. Tamburini, A. Cipollina, Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications, Desalination, 434 (2018) 121–160.
  3. Y. Muhammad, W. Lee, Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review, Sci. Total Environ., 681 (2019) 551–563.
  4. H.X. Lu, L. Wang, R. Wycisk, P.N. Pintauro, S.H. Lin, Quantifying the kinetics energetics performance tradeoff in bipolar membrane electrodialysis, J. Membr. Sci., 612 (2020) 118279, doi: 10.1016/j.memsci.2020.118279.
  5. A. Hassanvand, K.J. Wei, S. Talebi, G.Q. Chen, S.E. Kentish, The role of ion exchange membranes in membrane capacitive deionisation, Membranes, 7 (2017) 54–64.
  6. A.A. Uliana, N.T. Bui, J. Kamcev, M.K. Taylor, J.J. Urban, J.R. Long, Ion-capture electrodialysis using multifunctional adsorptive membranes, Science, 372 (2021) 296–299.
  7. P. Malek, J.M. Ortiz, H.M.A. Schulte-Herbrüggen, Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy, Desalination, 377(2016) 54–64.
  8. K.J. Min, J.H. Kim, K.Y. Park, Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment, Sci. Total Environ., 757 (2021) 143762, doi: 10.1016/j. scitotenv.2020.143762.
  9. X. Xu, Q. He, G. Ma, H. Wang, N. Nirmalakhandan, P. Xu, Selective separation of mono-and di-valent cations in electrodialysis during brackish water desalination: bench and pilot-scale studies, Desalination, 428(2018) 146–160.
  10. H. Yan, Y. Wang, L. Wu, M.A. Shehzad, C. Jiang, R. Fu, Z. Liu, T. Xu, Multistage-batch electrodialysis to concentrate highsalinity solutions: process optimization, water transport, and energy consumption, J. Membr. Sci., 570 (2019) 245–257.
  11. P. Nazila, M. Ahmad, M-Z. Arjomand, M. Mohammad Ali, Recovery of lithium ions from sodium-contaminated lithium bromide solution by using electrodialysis process, Chem. Eng. Res. Des., 98 (2015) 81–88.
  12. E. Mahendiravarman, D. Sangeetha, Anti-biofouling anion exchange membrane using surface modified quaternized poly(ether imide) for microbial fuel cells, J. Appl. Polym. Sci., 134 (2017) 44432, doi: 10.1002/app.44432.
  13. W.C. Lin, M.C. Li, Y.H. Wang, X.M. Wang, K. Xue, K. Xiao, X. Huang, Quantifying the dynamic evolution of organic, inorganic and biological synergistic fouling during nanofiltration using statistical approaches, Environ. Int., 133 (2019) 105201, doi: 10.1016/j.envint.2019.105201.
  14. D. Golubenko, A. Yaroslavtsev, Development of surfacesulfonated graft anion-exchange membranes with monovalent ion selectivity and antifouling properties for electromembrane processes, J. Membr. Sci., 612 (2020) 118408, doi: 10.1016/j. memsci.2020.118408.
  15. F. Tang, H.Y. Hu, L.J. Sun, Y.X. Sun, J.C. Crittenden, Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation, Water Res., 90 (2016) 329–336.
  16. W.Y. Wang, R.Q. Fu, Z.M. Liu, H.Z. Wang, Low-resistance antifouling ion exchange membranes fouled by organic foulants in electrodialysis, Desalination, 417 (2017) 1–8.
  17. Z.J. Zhao, S.Y. Shi, H.B. Cao, Y.J. Bart, V.D. Bruggen, Comparative studies on fouling of homogeneous anion exchange membranes by different structured organics in electrodialysis, J. Environ. Sci., 77 (2019) 218–228.
  18. L. Yao, L. Zhang, R. Wang, S. Chou, Z. Dong, A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes, J. Hazard. Mater., 301 (2016) 462–470.
  19. C. Zhao, T. Song, Y. Yu, L. Qu, J. Cheng, W. Zhu, Q. Wang, P. Li, W. Tang, Insight into the influence of humic acid and sodium alginate fractions on membrane fouling in coagulationultrafiltration combined system, Environ. Res., 191 (2020) 110228, doi: 10.1016/j.envres.2020.110228.
  20. Z. Zhao, S. Shi, H. Cao, B. Shan, Y. Sheng, Property characterization and mechanism analysis on organic fouling of structurally different anion exchange membranes in electrodialysis, Desalination, 428 (2018) 199–206.
  21. M.N. Fini, J. Zhu, B.V.D. Bruggen, H.T. Madsen, J. Muff, Preparation, characterization and scaling propensity study of a dopamine incorporated RO/FO TFC membrane for pesticide removal, J. Membr. Sci., 612 (2020) 118458, doi: 10.1016/j.memsci.2020.118458.
  22. K. Khoiruddin, D. Ariono, S. Subagjo, I.G. Wenten, Improved anti-organic fouling of polyvinyl chloride-based heterogeneous anion-exchange membrane modified by hydrophilic additives, J. Membr. Sci., 41 (2021) 102007, doi: 10.1016/ j.jwpe.2021.102007.
  23. X.M. Zhang, C.L. Zhang, F.N. Meng, C.H. Wang, P.F. Ren, Q. Zou, J.Y. Luan, Near-zero liquid discharge of desulfurization wastewater by electrodialysis-reverse osmosis hybrid system, J. Water Process Eng., 40 (2021) 101962, doi: 10.1016/j.jwpe.2021.101962.