References
- R.S. Kookana, P. Drechsel, P. Jamwal, J. Vanderzalm,
Urbanisation and emerging economies: issues and potential
solutions for water and food security, Sci. Total Environ.,
732 (2020) 139057, doi: 10.1016/j.scitotenv.2020.139057.
- R.I. McDonald, K. Weber, J. Padowski, M. Flörke, C. Schneider,
P.A. Green, T. Gleeson, S. Eckman, B. Lehner, D. Balk,
T. Boucher, G. Grill, M. Montgomery, Water on an urban planet:
urbanization and the reach of urban water infrastructure,
Global Environ. Change, 27 (2014) 96–105.
- T. Gao, G. Gu, Q. Zhou, Water Pollution Control Project, 4th ed.,
Higher Education Press, Beijing, 2015.
- Z. Jiang, H. Yang, Environmental Engineering, 3rd ed., Higher
Education Press, Beijing, 2013.
- S.A. Brownell, A.R. Chakrabarti, F.M. Kaser, L.G. Connelly,
R.L. Peletz, F. Reygadas, M.J. Lang, D.M. Kammen, K.L. Nelson,
Assessment of a low-cost, point-of-use, ultraviolet water
disinfection technology, J. Water Health, 6 (2008) 53–65.
- W. Ding, W. Jin, S. Cao, X. Zhou, C. Wang, Q. Jiang, H. Huang,
R. Tu, S. Han, Q. Wang, Ozone disinfection of chlorine-resistant
bacteria in drinking water, Water Res., 160 (2019) 339–349.
- T. Zhang, B. Xu, C. Hu, Y. Lin, L. Lin, T. Ye, F. Tian, A comparison
of iodinated trihalomethane formation from chlorine, chlorine
dioxide and potassium permanganate oxidation processes,
Water Res., 68 (2015) 394–403.
- R.D. Morris, A.M. Audet, I.F. Angelillo, T.C. Chalmers,
F. Mosteller, Chlorination, chlorination by-products, and
cancer: a meta-analysis, Am. J. Public Health, 82 (1992) 955–963.
- Y. Zhong, W. Gan, Y. Du, H. Huang, Q. Wu, Y. Xiang,
C. Shang, X. Yang, Disinfection by-products and their toxicity
in wastewater effluents treated by the mixing oxidant of
ClO2/Cl2, Water Res., 162 (2019) 471–481.
- F. Bernat-Quesada, M. Álvaro, H. García, S. Navalón, Impact
of chlorination and pre-ozonation on disinfection by-products
formation from aqueous suspensions of cyanobacteria:
Microcystis aeruginosa, Anabaena aequalis and Oscillatoria tenuis,
Water Res., 183 (2020) 116070, doi: 10.1016/j.watres.2020.116070.
- L. Feng, C. Peillex-Delphe, C. Lü, D. Wang, S. Giannakis,
C. Pulgarin, Employing bacterial mutations for the elucidation
of photo-Fenton disinfection: focus on the intracellular and
extracellular inactivation mechanisms induced by UVA
and H2O2, Water Res., 182 (2020) 116049, doi: 10.1016/j.watres.2020.116049.
- J. Rodríguez-Chueca, M. Polo-López, R. Mosteo, M. Ormad,
P. Fernandez-Ibanez, Disinfection of real and simulated
urban wastewater effluents using a mild solar photo-Fenton,
Appl. Catal., B, 150 (2014) 619–629.
- F. Ghanbari, M. Moradi, Application of peroxymonosulfate
and its activation methods for degradation of environmental
organic pollutants, Chem. Eng. J., 310 (2017) 41–62.
- D. Han, J. Wan, Y. Ma, Y. Wang, Y. Li, D. Li, Z. Guan, New
insights into the role of organic chelating agents in Fe(II)
activated persulfate processes, Chem. Eng. J., 269 (2015)
425–433.
- C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate
oxidation for in-situ remediation of TCE. II. Activated by
chelated ferrous ion, Chemosphere, 55 (2004) 1225–1233.
- C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate
oxidation for in situ remediation of TCE. I. Activated by ferrous
ion with and without a persulfate–thiosulfate redox couple,
Chemosphere, 55 (2004) 1213–1223.
- L. Ling, D. Zhang, C. Fan C. Shang, A Fe(II)/citrate/UV/PMS
process for carbamazepine degradation at a very low Fe(II)/
PMS ratio and neutral pH: the mechanisms, Water Res.,
124 (2017) 446–453.
- L. Ling, D. Zhang, J. Fang, C. Fan, C. Shang, A novel Fe(II)/citrate/UV/peroxymonosulfate process for micropollutant
degradation: optimization by response surface methodology
and effects of water matrices, Chemosphere, 184 (2017) 417–428.
- J. Wang, S. Wang, Activation of persulfate (PS) and
peroxymonosulfate (PMS) and application for the degradation
of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
- P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions
of inorganic radicals in aqueous solution, Chem. Ref. Data,
17 (1988) 1027–1284.
- J. Rodríguez-Chueca, S. Giannakis, M. Marjanovic,
M. Kohantorabi, M.R. Gholami, D. Grandjean, L.F. de Alencastro,
C. Pulgarín, Solar-assisted bacterial disinfection and removal of
contaminants of emerging concern by Fe2+-activated HSO2– vs.
S2O82– in drinking water, Appl. Catal., B, 248 (2019) 62–72.
- D.N. Wordofa, S.L. Walker, H. Liu, Sulfate radical-induced
disinfection of pathogenic Escherichia coli O157: H7 via ironactivated
persulfate, Environ. Sci. Technol. Lett., 4 (2017)
154–160.
- D. Xia, Y. Li, G. Huang, R. Yin, T. An, G. Li, H. Zhao, A. Lu,
P.K. Wong, Activation of persulfates by natural magnetic
pyrrhotite for water disinfection: efficiency, mechanisms,
and stability, Water Res., 112 (2017) 236–247.
- J. Rodríguez-Chueca, S. Guerra-Rodriguez, J.M. Raez,
M.-J. Lopez-Munoz, E. Rodriguez, Assessment of different iron
species as activators of S2O82– and HSO5– for inactivation of wild
bacteria strains, Appl. Catal., B, 248 (2019) 54–61.
- J. Rodríguez-Chueca, S.I. Moreira, M.S. Lucas, J.R. Fernandes,
P.B. Tavares, A. Sampaio, J.A. Peres, Disinfection of simulated
and real winery wastewater using sulphate radicals:
peroxymonosulphate/transition metal/UV-A LED oxidation,
J. Cleaner Prod., 149 (2017) 805–817.
- H. Qi, Q. Huang, Y.-C. Hung, Efficacy of activated persulfate in
inactivating Escherichia coli O157:H7 and Listeria monocytogenes,
Int. J. Food Microbiol., 284 (2018) 40–47.
- A. Bianco, M. Polo, P. Fernández, M. Brigante, G. Mailhot,
Disinfection of water inoculated with Enterococcus faecalis using
solar/Fe(III)EDDS-H2O2 or S2O82− process, Water Res., 118 (2017)
249–260.
- W. Wang, H. Wang, G. Li, T. An, H. Zhao, P.K. Wong,
Catalyst-free activation of persulfate by visible light for water
disinfection: efficiency and mechanisms, Water Res., 157 (2019)
106–118.
- M. Tong, F. Liu, Q. Dong, Z. Ma W. Liu, Magnetic Fe3O4-deposited
flower-like MoS2 nanocomposites for the Fenton-like Escherichia
coli disinfection and diclofenac degradation, J. Hazard. Mater.,
385 (2020) 121604, doi: 10.1016/j.jhazmat.2019.121604.
- L.C. Ferreira, M. Castro-Alférez, S. Nahim-Granados,
M.I. Polo-López, M.S. Lucas, G. Li Puma, P. Fernández-Ibáñez,
Inactivation of water pathogens with solar photo-activated
persulfate oxidation, Chem. Eng. J., 381 (2020) 122275,
doi: 10.1016/j.cej.2019.122275.
- D. Venieri, A. Karapa, M. Panagiotopoulou, I. Gounaki,
Application of activated persulfate for the inactivation of fecal
bacterial indicators in water, J. Environ. Manage., 261 (2020)
110223, doi: 10.1016/j.jenvman.2020.110223.
- J. Feng, C. Cai, H. Yao, R. Shen, Sterilization of Escherichia coli
in water by activated persulfate, China Water Wastewater,
35 (2019) 91–96.
- Y. Zhang, X. Xie, S. Huang, H. Liang, Effect of chelating agent
on oxidation rate of aniline in ferrous ion activated persulfate
system at neutral pH, J. Cent South Univ., 21 (2014) 1441–1447.
- M. Moradi, A. Elahinia, Y. Vasseghian, E.-N. Dragoi,
F. Omidi, A.M. Khaneghah, A review on pollutants removal by
sono-photo-Fenton processes, J. Environ. Chem. Eng., 8 (2020)
104330, doi: 10.1016/j.jece.2020.104330.
- S.E.P. Administration, Environmental Quality Standards
for Surface Water (GB3838-2002), China Standards Press,
Beijing, 2002.
- X.R. Xu, X.Z. Li, Degradation of azo dye Orange G in aqueous
solutions by persulfate with ferrous ion, Sep. Purif. Technol.,
72 (2010) 105–111.
- C. Liang, H.W. Su, Identification of sulfate and hydroxyl
radicals in thermally activated persulfate, Ind. Eng. Chem. Res.,
48 (2009) 5558–5562.
- J.E. Grebel, J.J. Pignatello, W.A. Mitch, Effect of halide ions and
carbonates on organic contaminant degradation by hydroxyl
radical-based advanced oxidation processes in saline waters,
Environ. Sci. Technol., 44 (2010) 6822–6828.
- P. Neta, V. Madhavan, H. Zemel, R.W. Fessenden, Rate constants
and mechanism of reaction of sulfate radical anion with
aromatic compounds, J. Am. Chem. Soc., 99 (1977) 163–164.