References

  1. R.S. Kookana, P. Drechsel, P. Jamwal, J. Vanderzalm, Urbanisation and emerging economies: issues and potential solutions for water and food security, Sci. Total Environ., 732 (2020) 139057, doi: 10.1016/j.scitotenv.2020.139057.
  2. R.I. McDonald, K. Weber, J. Padowski, M. Flörke, C. Schneider, P.A. Green, T. Gleeson, S. Eckman, B. Lehner, D. Balk, T. Boucher, G. Grill, M. Montgomery, Water on an urban planet: urbanization and the reach of urban water infrastructure, Global Environ. Change, 27 (2014) 96–105.
  3. T. Gao, G. Gu, Q. Zhou, Water Pollution Control Project, 4th ed., Higher Education Press, Beijing, 2015.
  4. Z. Jiang, H. Yang, Environmental Engineering, 3rd ed., Higher Education Press, Beijing, 2013.
  5. S.A. Brownell, A.R. Chakrabarti, F.M. Kaser, L.G. Connelly, R.L. Peletz, F. Reygadas, M.J. Lang, D.M. Kammen, K.L. Nelson, Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology, J. Water Health, 6 (2008) 53–65.
  6. W. Ding, W. Jin, S. Cao, X. Zhou, C. Wang, Q. Jiang, H. Huang, R. Tu, S. Han, Q. Wang, Ozone disinfection of chlorine-resistant bacteria in drinking water, Water Res., 160 (2019) 339–349.
  7. T. Zhang, B. Xu, C. Hu, Y. Lin, L. Lin, T. Ye, F. Tian, A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes, Water Res., 68 (2015) 394–403.
  8. R.D. Morris, A.M. Audet, I.F. Angelillo, T.C. Chalmers, F. Mosteller, Chlorination, chlorination by-products, and cancer: a meta-analysis, Am. J. Public Health, 82 (1992) 955–963.
  9. Y. Zhong, W. Gan, Y. Du, H. Huang, Q. Wu, Y. Xiang, C. Shang, X. Yang, Disinfection by-products and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2, Water Res., 162 (2019) 471–481.
  10. F. Bernat-Quesada, M. Álvaro, H. García, S. Navalón, Impact of chlorination and pre-ozonation on disinfection by-products formation from aqueous suspensions of cyanobacteria: Microcystis aeruginosa, Anabaena aequalis and Oscillatoria tenuis, Water Res., 183 (2020) 116070, doi: 10.1016/j.watres.2020.116070.
  11. L. Feng, C. Peillex-Delphe, C. Lü, D. Wang, S. Giannakis, C. Pulgarin, Employing bacterial mutations for the elucidation of photo-Fenton disinfection: focus on the intracellular and extracellular inactivation mechanisms induced by UVA and H2O2, Water Res., 182 (2020) 116049, doi: 10.1016/j.watres.2020.116049.
  12. J. Rodríguez-Chueca, M. Polo-López, R. Mosteo, M. Ormad, P. Fernandez-Ibanez, Disinfection of real and simulated urban wastewater effluents using a mild solar photo-Fenton, Appl. Catal., B, 150 (2014) 619–629.
  13. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants, Chem. Eng. J., 310 (2017) 41–62.
  14. D. Han, J. Wan, Y. Ma, Y. Wang, Y. Li, D. Li, Z. Guan, New insights into the role of organic chelating agents in Fe(II) activated persulfate processes, Chem. Eng. J., 269 (2015) 425–433.
  15. C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in-situ remediation of TCE. II. Activated by chelated ferrous ion, Chemosphere, 55 (2004) 1225–1233.
  16. C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple, Chemosphere, 55 (2004) 1213–1223.
  17. L. Ling, D. Zhang, C. Fan C. Shang, A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/ PMS ratio and neutral pH: the mechanisms, Water Res., 124 (2017) 446–453.
  18. L. Ling, D. Zhang, J. Fang, C. Fan, C. Shang, A novel Fe(II)/citrate/UV/peroxymonosulfate process for micropollutant degradation: optimization by response surface methodology and effects of water matrices, Chemosphere, 184 (2017) 417–428.
  19. J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
  20. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, Chem. Ref. Data, 17 (1988) 1027–1284.
  21. J. Rodríguez-Chueca, S. Giannakis, M. Marjanovic, M. Kohantorabi, M.R. Gholami, D. Grandjean, L.F. de Alencastro, C. Pulgarín, Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO2 vs. S2O82– in drinking water, Appl. Catal., B, 248 (2019) 62–72.
  22. D.N. Wordofa, S.L. Walker, H. Liu, Sulfate radical-induced disinfection of pathogenic Escherichia coli O157: H7 via ironactivated persulfate, Environ. Sci. Technol. Lett., 4 (2017) 154–160.
  23. D. Xia, Y. Li, G. Huang, R. Yin, T. An, G. Li, H. Zhao, A. Lu, P.K. Wong, Activation of persulfates by natural magnetic pyrrhotite for water disinfection: efficiency, mechanisms, and stability, Water Res., 112 (2017) 236–247.
  24. J. Rodríguez-Chueca, S. Guerra-Rodriguez, J.M. Raez, M.-J. Lopez-Munoz, E. Rodriguez, Assessment of different iron species as activators of S2O82– and HSO5 for inactivation of wild bacteria strains, Appl. Catal., B, 248 (2019) 54–61.
  25. J. Rodríguez-Chueca, S.I. Moreira, M.S. Lucas, J.R. Fernandes, P.B. Tavares, A. Sampaio, J.A. Peres, Disinfection of simulated and real winery wastewater using sulphate radicals: peroxymonosulphate/transition metal/UV-A LED oxidation, J. Cleaner Prod., 149 (2017) 805–817.
  26. H. Qi, Q. Huang, Y.-C. Hung, Efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes, Int. J. Food Microbiol., 284 (2018) 40–47.
  27. A. Bianco, M. Polo, P. Fernández, M. Brigante, G. Mailhot, Disinfection of water inoculated with Enterococcus faecalis using solar/Fe(III)EDDS-H2O2 or S2O82− process, Water Res., 118 (2017) 249–260.
  28. W. Wang, H. Wang, G. Li, T. An, H. Zhao, P.K. Wong, Catalyst-free activation of persulfate by visible light for water disinfection: efficiency and mechanisms, Water Res., 157 (2019) 106–118.
  29. M. Tong, F. Liu, Q. Dong, Z. Ma W. Liu, Magnetic Fe3O4-deposited flower-like MoS2 nanocomposites for the Fenton-like Escherichia coli disinfection and diclofenac degradation, J. Hazard. Mater., 385 (2020) 121604, doi: 10.1016/j.jhazmat.2019.121604.
  30. L.C. Ferreira, M. Castro-Alférez, S. Nahim-Granados, M.I. Polo-López, M.S. Lucas, G. Li Puma, P. Fernández-Ibáñez, Inactivation of water pathogens with solar photo-activated persulfate oxidation, Chem. Eng. J., 381 (2020) 122275, doi: 10.1016/j.cej.2019.122275.
  31. D. Venieri, A. Karapa, M. Panagiotopoulou, I. Gounaki, Application of activated persulfate for the inactivation of fecal bacterial indicators in water, J. Environ. Manage., 261 (2020) 110223, doi: 10.1016/j.jenvman.2020.110223.
  32. J. Feng, C. Cai, H. Yao, R. Shen, Sterilization of Escherichia coli in water by activated persulfate, China Water Wastewater, 35 (2019) 91–96.
  33. Y. Zhang, X. Xie, S. Huang, H. Liang, Effect of chelating agent on oxidation rate of aniline in ferrous ion activated persulfate system at neutral pH, J. Cent South Univ., 21 (2014) 1441–1447.
  34. M. Moradi, A. Elahinia, Y. Vasseghian, E.-N. Dragoi, F. Omidi, A.M. Khaneghah, A review on pollutants removal by sono-photo-Fenton processes, J. Environ. Chem. Eng., 8 (2020) 104330, doi: 10.1016/j.jece.2020.104330.
  35. S.E.P. Administration, Environmental Quality Standards for Surface Water (GB3838-2002), China Standards Press, Beijing, 2002.
  36. X.R. Xu, X.Z. Li, Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion, Sep. Purif. Technol., 72 (2010) 105–111.
  37. C. Liang, H.W. Su, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 48 (2009) 5558–5562.
  38. J.E. Grebel, J.J. Pignatello, W.A. Mitch, Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters, Environ. Sci. Technol., 44 (2010) 6822–6828.
  39. P. Neta, V. Madhavan, H. Zemel, R.W. Fessenden, Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds, J. Am. Chem. Soc., 99 (1977) 163–164.