References

  1. A. Dargahi, M. Vosoughi, S. Ahmad Mokhtari, Y. Vaziri, M. Alighadri, Electrochemical degradation of
    2,4-dinitrotoluene (DNT) from aqueous solutions using three-dimensional electrocatalytic reactor (3DER): degradation pathway, evaluation of toxicity and optimization using RSM-CCD, Arabian J. Chem., 15 (2022) 103648, doi: 10.1016/j.arabjc.2021.103648.
  2. A. Dargahi, H.R. Barzoki, M. Vosoughi, S. Ahmad Mokhtari, Enhanced electrocatalytic degradation of
    2,4-dinitrophenol (2,4-DNP) in three-dimensional sono-electrochemical (3D/SEC) process equipped with Fe/SBA-15 nanocomposite particle electrodes: degradation pathway and application for real wastewater, Arabian J. Chem., 15 (2022) 103801, doi: 10.1016/j.arabjc.2022.103801.
  3. A. Almasi, A. Dargahi, A. Amrane, M. Fazlzadeh, M. Soltanian, A. Hashemian, Effect of molasses addition as biodegradable material on phenol removal under anaerobic conditions, Environ. Eng. Manage. J., 17 (2018) 1475–1482.
  4. A. Dargahi, K. Hasani, S. Ahmad Mokhtari, M. Vosoughi, M. Moradi, Y. Vaziri, Highly effective degradation of 2,4-Dichlorophenoxyacetic acid herbicide in a three-dimensional sono-electro-Fenton (3D/SEF) system using powder activated carbon (PAC)/Fe3O4 as magnetic particle electrode, J. Environ. Chem. Eng., 9 (2021) 105889, doi: 10.1016/j.jece.2021.105889.
  5. A. Dehdar, G. Asgari, M. Leili, T. Madrakian, A. Seid- Mohammadi, Step-scheme BiVO4/WO3 heterojunction photocatalyst under visible LED light irradiation removing 4-chlorophenol in aqueous solutions, J. Environ. Manage., 297 (2021) 113338, doi: 10.1016/j.jenvman.2021.113338.
  6. F.S. Arghavan, A.H. Panahi, N. Nasseh, M. Ghadirian, Adsorption-photocatalytic processes for removal of pentachlorophenol contaminant using FeNi3/SiO2/ZnO magnetic nanocomposite under simulated solar light irradiation, Environ. Sci. Pollut. Res., 28 (2021) 7462–7475.
  7. NTP, National Toxicology Program, NTP Toxicology and Carcinogenesis Studies of Pentachlorophenol
    (CAS NO. 87-86-5) in F344/N Rats (Feed Studies), Natl. Toxicol. Program Tech. Rep. Ser., 483 (1999) 1–182.
  8. J. Choi, M. Cui, Y. Lee, J. Kim, Y. Son, J. Lim, J. Ma, J. Khim, Application of persulfate with hydrodynamic cavitation and ferrous in the decomposition of pentachlorophenol, Ultrason. Sonochem., 66 (2020) 105106, doi: 10.1016/j. ultsonch.2020.105106.
  9. J. Ranjan, V. Joshi, T. Mandal, D.D. Mandal, Ecotoxicological risk assessment of pentachlorophenol, an emerging DBP to plants: evaluation of oxidative stress and antioxidant responses, Environ. Sci. Pollut. Res. Int., 28 (2021) 27954–27965.
  10. Y. Ren, J. Ma, Y. Lee, Z. Han, M. Cui, B. Wang, M. Long, J. Khim, Reaction of activated carbon zerovalent iron with pentachlorophenol under anaerobic conditions, J. Cleaner Prod., 297 (2021) 126748, doi: 10.1016/j.jclepro.2021.126748.
  11. Z. Seyedi, A.A. Amooey, A. Amouei, H. Tashakkorian, Pentachlorophenol removal from aqueous solutions using montmorillonite modified by silane and imidazole: kinetic and isotherm study, Iran. J. Environ. Health Sci. Eng., 17 (2019) 989–999.
  12. A. Dehdar, A.R. Rahmani, G. Azarian, R. Jamshidi, S. Moradi, Removal of furfural using zero gap electrocoagulation by a scrap iron anode from aqueous solution, J. Mol. Liq., 367 (2022) 120368, doi: 10.1016/j.molliq.2022.120368.
  13. V. Tolardo, S. García-Ballesteros, L. Santos-Juanes, R. Vercher, A.M. Amat, A. Arques, E. Laurenti, Pentachlorophenol removal from water by soybean peroxidase and iron(II) salts concerted action, Water, Air, Soil Pollut., 230 (2019) 140, doi: 10.1007/s11270-019-4189-7.
  14. X. Liu, X. Quan, L. Bo, S. Chen, Y. Zhao, Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation, Carbon, 42 (2004) 415–422.
  15. J. Pan, X. Zou, X. Wang, W. Guan, C. Li, Y. Yan, X. Wu, Adsorptive removal of 2,4-didichlorophenol and
    2,6-didichlorophenol from aqueous solution by β-cyclodextrin/attapulgite composites: equilibrium, kinetics and thermodynamics, Chem. Eng. J. (Amsterdam, Neth.), 166 (2011) 40–48.
  16. B. Jung, R. Sivasubramanian, B. Batchelor, A. Abdel-Wahab, Chlorate reduction by dithionite/UV advanced reduction process, Int. J. Environ. Sci. Technol., 14 (2017) 123–134.
  17. L. Urán-Duque, J.C. Saldarriaga-Molina, A. Rubio-Clemente, Advanced oxidation processes based on sulfate radicals for wastewater treatment: research trends, Water, 13 (2021) 2445, doi: 10.3390/w13172445.
  18. A. Seid-Mohammadi, Z. Ghorbanian, G. Asgari, A. Dargahi, Photocatalytic degradation of metronidazole (MnZ) antibiotic in aqueous media using copper oxide nanoparticles activated by H2O2/UV process: biodegradability and kinetic studies, Desal. Water Treat., 193 (2020) 369–380.
  19. A. Seid-Mohammadi, G. Asgarai, Z. Ghorbanian, A. Dargahi, The removal of cephalexin antibiotic in aqueous solutions by ultrasonic waves/hydrogen peroxide/nickel oxide nanoparticles (US/H2O2/NiO) hybrid process, Sep. Sci. Technol. (Philadelphia, PA, U.S.), 55 (2020) 1558–1568.
  20. A. Romero, A. Santos, F. Vicente, C. González, Diuron abatement using activated persulphate: effect of pH, Fe(II) and oxidant dosage, Chem. Eng. J. (Amsterdam, Neth.), 162 (2010) 257–265.
  21. J. Jayapal, M. Thenmozhi, UV photoelectrocatalytic degradation of m-cresol pollutant using TiO2 dip-coated stainless steel electrode system, Environ. Conserv. J., 22 (2021) 123–131.
  22. W. Song, J. Li, C. Fu, Z. Wang, Y. Zhou, X. Zhang, J. Yang, K. Wang, Y. Liu, Q. Song, Establishment of sulfate radical advanced oxidation process based on Fe2+/O2/dithionite for organic contaminants degradation, Chem. Eng. J. (Amsterdam, Neth.), 410 (2021) 128204, doi: 10.1016/j.cej.2020.128204.
  23. G. Govindan, M. Raja, M. Noel, E. James, Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide, J. Hazard. Mater., 272 (2014) 42–51.
  24. P. Xie, J. Ma, W. Liu, J. Zou, S. Yue, X. Li, M.R. Wiesner, J. Fang, Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals, Water Res., 69 (2015) 223–233.
  25. G. Asgari, A. Seid-Mohammadi, M.R. Samargandi, R. Jamshidi, Mineralization, kinetics, and degradation pathway of pentachlorophenol degradation from aqueous media via persulfate/dithionite process, Arabian J. Chem., 14 (2021) 103357, doi: 10.1016/j.arabjc.2021.103357.
  26. M.-Y. Lee, W.-L. Wang, Y. Du, H.-Y. Hu, N. Huang, Z.-B. Xu, Q.-Y. Wu, B. Ye, Enhancement effect among a UV, persulfate, and copper (UV/PS/Cu2+) system on the degradation of nonoxidizing biocide: the kinetics, radical species, and degradation pathway, Chem. Eng. J. (Amsterdam, Neth.), 382 (2020) 122312, doi: 10.1016/j.cej.2019.122312.
  27. A. Mudhoo, D. Mohan, C.U. Pittman Jr., G. Sharma, M. Sillanpää, Adsorbents for real-scale water remediation: gaps and the road forward, J. Environ. Chem. Eng., 9 (2021) 105380, doi: 10.1016/j.jece.2021.105380.
  28. A. Seid-Mohammadi, Z. Ghorbanian, G. Asgari, A. Dargahi, Degradation of CEX antibiotic from aqueous environment by US/S2O82–/NiO process: optimization using taguchi method and kinetic studies, Desal. Water Treat., 171 (2019) 444–455.
  29. A. Dargahi, D. Nematollahi, G. Asgari, R. Shokoohi, A. Ansari, M.R. Samarghandi, Electrodegradation of
    2,4-dichlorophenoxyacetic acid herbicide from aqueous solution using three-dimensional electrode reactor with G/β-PbO2 anode: Taguchi optimization and degradation mechanism determination, RSC Adv., 8 (2018) 39256–39268.
  30. G. Asgari, A. Seidmohammadi, A.R. Rahmani, M.R. Samarghandi, H. Faraji, Application of the UV/sulfoxylate/phenol process in the simultaneous removal of nitrate and pentachlorophenol from the aqueous solution, J. Mol. Liq., 314 (2020) 113581, doi: 10.1016/j.molliq.2020.113581.
  31. C. Liang, H.-W. Su, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 48 (2009) 5558–5562.
  32. Z. Ghorbanian, G. Asgari, M.T. Samadi, A. Seid-mohammadi, Removal of 2,4 dichlorophenol using microwave assisted nanoscale zero-valent copper activated persulfate from aqueous solutions: mineralization, kinetics, and degradation pathways, J. Mol. Liq., 296 (2019) 111873, doi: 10.1016/j.molliq.2019.111873.
  33. X. Pan, J. Wei, M. Zou, J. Chen, R. Qu, Z. Wang, Products distribution and contribution of (de)chlorination, hydroxylation and coupling reactions to 2,4-dichlorophenol removal in seven oxidation systems, Water Res., 194 (2021) 116916, doi: 10.1016/j.watres.2021.116916.
  34. Y.-T. Lin, C. Liang, J.-H. Chen, Feasibility study of ultraviolet activated persulfate oxidation of phenol, Chemosphere, 82 (2011) 1168–1172.
  35. Y.-q. Gao, N.-y. Gao, Y. Deng, D.-q. Yin, Y.-s. Zhang, W.-l. Rong, S.-d. Zhou, Heat-activated persulfate oxidation of sulfamethoxazole in water, Desal. Water Treat., 56 (2015) 2225–2233.
  36. J. Zhao, Y. Zhang, X. Quan, S. Chen, Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zerovalent iron and peroxydisulfate at ambient temperature, Sep. Purif. Technol., 71 (2010) 302–307.
  37. W. Song, J. Li, C. Fu, Z. Wang, X. Zhang, J. Yang, W. Hogland, L. Gao, Kinetics and pathway of atrazine degradation by a novel method: persulfate coupled with dithionite, Chem. Eng. J. (Amsterdam, Neth.), 373 (2019) 803–813.
  38. C.-W. Wang, C. Liang, Oxidative degradation of TMAH solution with UV persulfate activation, Chem. Eng. J. (Amsterdam, Neth.), 254 (2014) 472–478.
  39. S. Wang, N. Zhou, Removal of carbamazepine from aqueous solution using sono-activated persulfate process, Ultrason. Sonochem., 29 (2016) 156–162.
  40. W. Song, J. Li, Z. Wang, C. Fu, X. Zhang, J. Feng, Z. Xu, Q. Song, Degradation of bisphenol A by persulfate coupled with dithionite: optimization using response surface methodology and pathway, Sci. Total Environ., 699 (2020) 134258, doi: 10.1016/j.scitotenv.2019.134258.
  41. Y. Liu, Y. Zhang, A. Zhou, A potential novel approach for in situ chemical oxidation based on the combination of persulfate and dithionite, Sci. Total Environ., 693 (2019) 133635, doi: 10.1016/j.scitotenv.2019.133635.
  42. Y. Rao, L. Qu, H. Yang, W. Chu, Degradation of carbamazepine by Fe(II)-activated persulfate process, J. Hazard. Mater., 268 (2014) 23–32.
  43. S. Rodriguez, L. Vasquez, D. Costa, A. Romero, A. Santos, Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI), Chemosphere, 101 (2014) 86–92.
  44. G. Asgari, A. Sidmohammadi, A.R. Rahmani, M.R. Samargandi, H. Faraji, Efficient decomposition of pentachlorophenol by a high photon flux UV/sodium hydrosulfite: kinetics, intermediates and associated transformation pathway, Optik, 218 (2020) 164981, doi: 10.1016/j.ijleo.2020.164981.
  45. C. Qi, X. Liu, W. Zhao, C. Lin, J. Ma, W. Shi, Q. Sun, H. Xiao, Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate, Environ. Sci. Pollut. Res., 22 (2015) 4670–4679.
  46. M. Cao, Y. Hou, E. Zhang, S. Tu, S. Xiong, Ascorbic acid induced activation of persulfate for pentachlorophenol degradation, Chemosphere, 229 (2019) 200–205.
  47. Y. Qi, J. Wei, R. Qu, G. Al-Basher, X. Pan, A.A. Dar, A. Shad, D. Zhou, Z. Wang, Mixed oxidation of aqueous nonylphenol and triclosan by thermally activated persulfate: reaction kinetics and formation of
    co-oligomerization products, Chem. Eng. J. (Amsterdam, Neth.), 403 (2021) 126396,
    doi: 10.1016/j.cej.2020.126396.