References

  1. T. Shindhal, P. Rakholiya, S. Varjani, A. Pandey, H.H. Ngo, W. Guo, H.Y. Ng, M.J. Taherzadeh, A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater, Bioengineered, 12 (2021) 70–87.
  2. V. Selvaraj, T.S. Karthika, C. Mansiya, M. Alagar, An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications, J. Mol. Struct., 1224 (2021) 129195, doi: 10.1016/j.molstruc.2020.129195.
  3. H.R. Dihom, M.M. Al-Shaibani, R.M.S.R. Mohamed, A.A. Al-Gheethi, A. Sharma, M.H.B. Khamidun, Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract: a critical review, J. Water Process Eng., 47 (2022) 102705, doi: 10.1016/j.jwpe.2022.102705.
  4. K. Kaur, R. Badru, P.P. Singh, S. Kaushal, Photodegradation of organic pollutants using heterojunctions: a review, J. Environ. Chem. Eng., 8 (2020) 103666, doi: 10.1016/j.jece.2020.103666.
  5. H. Dong, X. Zhang, H. Wu, C. Li, Nonmetal carbon-based photocatalysts for degradation of organic pollutants: a short review, Desal. Water Treat., 163 (2019) 260–269.
  6. M.H. Habibi, E. Askari, Synthesis of nanocrystalline zinc manganese oxide by thermal decomposition of new dinuclear manganese(III) precursors, J. Therm. Anal. Calorim., 111 (2013) 1345–1349.
  7. M.S. Çevika, Ö. Şahinb, O. Baytarb, S. Horozc, A. Ekincid, Investigation of the effect of magnesium and activated carbon on the photocatalytic degradation reaction of ZnO photocatalyst, Desal. Water Treat., 209 (2021) 212–218.
  8. Y. Xu, H. Wu, Z. Lv, Y. Cao, Synthesis of Sr@TiO2 nanomaterials rapidly by microwave induced combustion method and measure its photocatalytic degradation properties of methyl orange wastewater, Desal. Water Treat., 245 (2022) 297–305.
  9. V. Vaiano, M. Matarangolo, J. Murcia, H. Rojas, J.A. Navío, M. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag, Appl. Catal., B, 225 (2018) 197–206.
  10. X. He, A. Wang, P. Wu, S. Tang, Y. Zhang, L. Li, P. Ding, Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: a review, Sci. Total Environ., 743 (2020) 140694, doi: 10.1016/j.scitotenv.2020.140694.
  11. S.G. Kumar, K.K. Rao, Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO), Appl. Surf. Sci., 391 (2017) 124–148.
  12. A. Shokri, M. Sanavi Fard, A critical review in the features and application of photocatalysts in wastewater treatment, Chem. Pap., 76 (2022) 5309–5339.
  13. C.-H. Wu, C.-Y. Kuo, C.-D. Dong, C.-W. Chen, Y.-L. Lin, Y.-S. Kuan, Synthesis, characterization, and photocatalytic activity of a novel Si2O3/Ag3VO4 heterojunction photocatalyst, Desal. Water Treat., 198 (2020) 364–375.
  14. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al‐Ghamdi, Heterojunction photocatalysts, Adv. Mater., 29 (2017) 1601694, doi: 10.1002/adma.201601694.
  15. X. Fang, J. Chen, J. Zhan, Heterojunction photocatalyst for organic degradation: superior photocatalytic activity through the phase and interface engineering, Ceram. Int., 46 (2020) 23245–23256.
  16. L. Zhu, H. Li, Q. Xu, D. Xiong, P. Xia, High-efficient separation of photoinduced carriers on double Z-scheme heterojunction for superior photocatalytic CO2 reduction, J. Colloid Interface Sci., 564 (2020) 303–312.
  17. Ö. Tuna, E.B. Simsek, Construction of novel Zn2TiO4/g-C3N4 heterojunction with efficient photodegradation performance of tetracycline under visible light irradiation, Environ. Sci. Pollut. Res., 28 (2021) 10005–10017.
  18. H. Tian, S. Wang, C. Zhang, J.-P. Veder, J. Pan, M. Jaroniec, L. Wang, J. Liu, Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production, J. Mater. Chem. A, 5 (2017) 11615–11622.
  19. R. Qin, F. Meng, M.W. Khan, B. Yu, H. Li, Z. Fan, J. Gong, Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts, Mater. Lett., 240 (2019) 84–87.
  20. Q. Chen, L. Wu, X. Zhao, X.-J. Yang, Fabrication of Zn-Ti layered double oxide nanosheets with ZnO/ZnTiO3 heterojunction for enhanced photocatalytic degradation of MO, RhB and MB, J. Mol. Liq., 353 (2022) 118794, doi: 10.1016/j.molliq.2022.118794.
  21. J.R. de Melo, D.M. de Oliveira, A.V. Scalco, A.M. Ferrari, N.R. Camargo Fernandes, M.L. Gimenes, Photocatalytic degradation of sulfonamide and its human metabolite by immobilized ZnO nanorods/TiO2 nanoparticles, Desal. Water Treat., 256 (2022) 51–64.
  22. A. Das, P.M. Kumar, M. Bhagavathiachari, R.G. Nair, Hierarchical ZnO-TiO2 nanoheterojunction: a strategy driven approach to boost the photocatalytic performance through the synergy of improved surface area and interfacial charge transport, Appl. Surf. Sci., 534 (2020) 147321, doi: 10.1016/j.apsusc.2020.147321.
  23. C.H. Nguyen, M.L. Tran, T.T. Van Tran, R.-S. Juang, Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites, Sep. Purif. Technol., 232 (2020) 115962, doi: 10.1016/j. seppur.2019.115962.
  24. F. Wang, W. Li, S. Gu, H. Li, X. Liu, M. Wang, Fabrication of FeWO4@ZnWO4/ZnO heterojunction photocatalyst: synergistic effect of ZnWO4/ZnO and FeWO4@ZnWO4/ZnO heterojunction structure on the enhancement of visible-light photocatalytic activity, ACS Sustainable Chem. Eng., 4 (2016) 6288–6298.
  25. C. Kang, K. Xiao, Z. Yao, Y. Wang, D. Huang, L. Zhu, F. Liu, T. Tian, Hydrothermal synthesis of graphene-ZnTiO3 nanocomposites with enhanced photocatalytic activities, Res. Chem. Intermed., 44 (2018) 6621–6636.
  26. C. Chuaicham, S. Karthikeyan, J.T. Song, T. Ishihara, B. Ohtani, K. Sasaki, Importance of ZnTiO3 phase
    in ZnTi-mixed metal oxide photocatalysts derived from layered double hydroxide, ACS Appl. Mater. Interfaces, 12 (2020) 9169–9180.
  27. S. Perween, A. Ranjan, Improved visible-light photocatalytic activity in ZnTiO3 nanopowder prepared by sol-electrospinning, Sol. Energy Mater. Sol. Cells, 163 (2017) 148–156.
  28. R. Abirami, T. Senthil, S. Keerthana, R. Yuvakkumar, G. Ravi, M. Pannipara, A.G. Al-Sehemi, An approach to enhance the photocatalytic activity of ZnTiO3, Ceram. Int., 47 (2021) 18122–18131.
  29. J.C. Pantoja-Espinoza, J.L. Domínguez-Arvizu, J.A. Jiménez-Miramontes, B.C. Hernández-Majalca,
    M.J. Meléndez-Zaragoza, J.M. Salinas-Gutiérrez, G.M. Herrera-Pérez, V.H. Collins-Martínez, A. López-Ortiz, Comparative study of Zn2Ti3O8 and ZnTiO3 photocatalytic properties for hydrogen production, Catalysts, 10 (2020) 1372, doi: 10.3390/catal10121372.
  30. Y. Yang, Y. Zhu, X. Ye, K. Zhou, P. Li, H. Chen, Y. Dan, W. Yang, H. Hou, One-dimensional mesoporous
    anatase-TiO2/rutile-TiO2/ZnTiO3 triphase heterojunction with boosted photocatalytic hydrogen production activity, Catal. Lett., 151 (2021) 359–369.
  31. C. Yu, F. Chen, D. Zeng, Y. Xie, W. Zhou, Z. Liu, L. Wei, K. Yang, D. Li, A facile phase transformation strategy for fabrication of novel Z-scheme ternary heterojunctions with efficient photocatalytic properties, Nanoscale, 11 (2019) 7720–7733.
  32. F. Chen, C. Yu, L. Wei, Q. Fan, F. Ma, J. Zeng, J. Yi, K. Yang, H. Ji, Fabrication and characterization of
    ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr(VI) ions, Sci. Total Environ., 706 (2020) 136026, doi: 10.1016/j.scitotenv.2019.136026.
  33. K.S. Ranjith, T. Uyar, ZnO-TiO2 composites and ternary ZnTiO3 electrospun nanofibers: the influence of annealing on the photocatalytic response and reusable functionality, CrystEngComm, 20 (2018) 5801–5813.
  34. M. Faisal, M. Jalalah, F.A. Harraz, A.M. El-Toni, J.P. Labis, M. Al-Assiri, A novel Ag/PANI/ZnTiO3 ternary nanocomposite as a highly efficient visible-light-driven photocatalyst, Sep. Purif. Technol., 256 (2021) 117847, doi: 10.1016/j. seppur.2020.117847.
  35. H.S. Varaprasad, P. Sridevi, M.S. Anuradha, Optical, morphological, electrical properties of
    ZnO-TiO2-SnO2/CeO2 semiconducting ternary nanocomposite, Adv. Powder Technol., 32 (2021) 1472–1480.
  36. J. Yao, Z. Gao, Q. Meng, G. He, H. Chen, One-step synthesis of reduced graphene oxide based ceric dioxide modified with cadmium sulfide (CeO2/CdS/RGO) heterojunction with enhanced sunlight-driven photocatalytic activity, J. Colloid Interface Sci., 594 (2021) 621–634.
  37. U. Akpan, B. Hameed, The advancements in sol-gel method of doped-TiO2 photocatalysts, Appl. Catal., A, 375 (2010) 1–11.
  38. K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S.-y. Liu, H. Lin, G. Wang, Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT studies, Ceram. Int., 46 (2020) 1494–1502.
  39. J. Lu, D. Li, Y. Chai, L. Li, M. Li, Y. Zhang, J. Liang, Rational design and preparation of nanoheterostructures based on zinc titanate for solar-driven photocatalytic conversion of CO2 to valuable fuels, Appl. Catal., B, 256 (2019) 117800, doi: 10.1016/j.apcatb.2019.117800.
  40. C.-T. Wang, J.-C. Lin, Surface nature of nanoparticle zinctitanium oxide aerogel catalysts, Appl. Surf. Sci., 254 (2008) 4500–4507.
  41. P. Tahay, Y. Khani, M. Jabari, F. Bahadoran, N. Safari, A. Zamanian, Synthesis of cubic and hexagonal ZnTiO3 as catalyst support in steam reforming of methanol: study of physical and chemical properties of copper catalysts on the H2 and CO selectivity and coke formation, Int. J. Hydrogen Energy, 45 (2020) 9484–9495.
  42. L. Munguti, F. Dejene, Influence of annealing temperature on structural, optical and photocatalytic properties of ZnO-TiO2 composites for application in dye removal in water, Nano-Struct. Nano-Objects, 24 (2020) 100594, doi: 10.1016/j. nanoso.2020.100594.
  43. N.T. Nolan, M.K. Seery, S.C. Pillai, Crystallization and phasetransition characteristics of sol-gel-synthesized zinc titanates, Chem. Mater., 23 (2011) 1496–1504.
  44. L. Ding, S. Yang, Z. Liang, X. Qian, X. Chen, H. Cui, J. Tian, TiO2 nanobelts with anatase/rutile heterophase junctions for highly efficient photocatalytic overall water splitting, J. Colloid Interface Sci., 567 (2020) 181–189.
  45. K. Kalantari, M. Kalbasi, M. Sohrabi, S.J. Royaee, Enhancing the photocatalytic oxidation of dibenzothiophene using visible light responsive Fe and N co-doped TiO2 nanoparticles, Ceram. Int., 43 (2017) 973–981.
  46. A. Sahu, R. Chaurashiya, K. Hiremath, A. Dixit, Nanostructured zinc titanate wide band gap semiconductor as a photoelectrode material for quantum dot sensitized solar cells, Sol. Energy, 163 (2018) 338–346.
  47. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A.Y. Faal, S. Bagheri, Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through solgel processes and its photocatalyst application, Adv. Powder Technol., 27 (2016) 2066–2075.
  48. S. Jagtap, K. Priolkar, Evaluation of ZnO nanoparticles and study of ZnO-TiO2 composites for lead free humidity sensors, Sens. Actuators, B, 183 (2013) 411–418.
  49. Z. Liu, D. Zhou, S. Gong, H. Li, Studies on a basic question of zinc titanates, J. Alloys Compd., 475 (2009) 840–845.
  50. K. Kalantari, M. Kalbasi, M. Sohrabi, S.J. Royaee, Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light, Ceram. Int., 42 (2016) 14834–14842.
  51. M.H. Habibi, M. Mikhak, Titania/zinc oxide nanocomposite coatings on glass or quartz substrate for photocatalytic degradation of direct blue 71, Appl. Surf. Sci., 258 (2012) 6745–6752.
  52. A. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting, Sol. Energy Mater. Sol. Cells, 91 (2007) 1326–1337.
  53. M. Sarkar, S. Sarkar, A. Biswas, S. De, P.R. Kumar, E.M. Mothi, A. Kathiravan, Zinc titanate nanomaterials–photocatalytic studies and sensitization of hydantoin derivatized porphyrin dye, Nano-Struct. Nano-Objects, 21 (2020) 100412, doi: 10.1016/j. nanoso.2019.100412.
  54. S. Lei, H. Fan, X. Ren, J. Fang, L. Ma, Z. Liu, Novel sintering and band gap engineering of ZnTiO3 ceramics with excellent microwave dielectric properties, J. Mater. Chem. C, 5 (2017) 4040–4047.
  55. R. Abirami, C. Kalaiselvi, L. Kungumadevi, T. Senthil, M. Kang, Synthesis and characterization of ZnTiO3 and Ag doped ZnTiO3 perovskite nanoparticles and their enhanced photocatalytic and antibacterial activity, J. Solid State Chem., 281 (2020) 121019, doi: 10.1016/j.jssc.2019.121019.
  56. N. Sutanto, K.A. Saharudin, S. Sreekantan, V. Kumaravel, H. Md Akil, Heterojunction catalysts
    g-C3N4/-3ZnO-c-Zn2Ti3O8 with highly enhanced visible-light-driven photocatalytic activity, J. Sol-Gel Sci. Technol., 93 (2020) 354–370.
  57. Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev., 117 (2017) 11302–11336.
  58. S. Eydivand, M. Nikazar, Degradation of 1,2-dichloroethane in simulated wastewater solution: a comprehensive study by photocatalysis using TiO2 and ZnO nanoparticles, Chem. Eng. Commun., 202 (2015) 102–111.
  59. D. Gupta, R. Chauhan, N. Kumar, V. Singh, V.C. Srivastava, P. Mohanty, T.K. Mandal, Enhancing photocatalytic degradation of quinoline by ZnO: TiO2 mixed oxide: optimization of operating parameters and mechanistic study, J. Environ. Manage., 258 (2020) 110032, doi: 10.1016/j.jenvman.2019.110032.
  60. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
  61. M.H. Habibi, E. Askari, The effect of operational parameters on the photocatalytic degradation of CI reactive yellow 86 textile dye using manganese zinc oxide nanocomposite thin films, J. Adv. Oxid. Technol., 14 (2011) 190–195.
  62. N.K. Nasab, Z. Sabouri, S. Ghazal, M. Darroudi, Greenbased synthesis of mixed-phase silver nanoparticles as an effective photocatalyst and investigation of their antibacterial properties, J. Mol. Struct., 1203 (2020) 127411, doi: 10.1016/j.molstruc.2019.127411.
  63. S. Senobari, A. Nezamzadeh-Ejhieh, A comprehensive study on the enhanced photocatalytic activity of CuONiO nanoparticles: designing the experiments, J. Mol. Liq., 261 (2018) 208–217.
  64. A. Akbari, Z. Sabouri, H.A. Hosseini, A. Hashemzadeh, M. Khatami, M. Darroudi, Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments, Inorg. Chem. Commun., 115 (2020) 107867,
    doi: 10.1016/j.inoche.2020.107867.
  65. X.-H. Ou, C.-H. Wu, S.-L. Lo, Photodegradation of 4-chlorophenol by UV/photocatalysts: the effect of the interparticle electron transfer process, React. Kinet. Catal. Lett., 88 (2006) 89–95.
  66. W. Gao, C. Ran, M. Wang, L. Li, Z. Sun, X. Yao, The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl, Br)/rGO composites and the pseudo-second-order kinetics reaction nature of the Ag/AgBr system, Phys. Chem. Chem. Phys., 18 (2016) 18219–18226.
  67. Z. Li, X. Chen, M. Wang, X. Zhang, L. Liao, T. Fang, B. Li, Photocatalytic degradation of Congo red by using the Cu2O/alpha-Fe2O3 composite catalyst, Desal. Water Treat., 215 (2021) 222–231.
  68. A. Ghenaatgar, R.M. Tehrani, A. Khadir, Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: optimization of operational parameters and kinetic studies, J. Water Process Eng., 32 (2019) 100969, doi: 10.1016/j.jwpe.2019.100969.