References

  1. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review, Water Res., 139 (2018) 118–131.
  2. H. Zollinger, Color Chemistry: Synthesis, Properties and Application of Organic Dyes and Pigments, VCH Publishers, New York, 2004.
  3. M.A. Brown, S.C. De Vito, Predicting azo dye toxicity, Crit. Rev. Env. Sci. Technol., 23 (1993) 249–324.
  4. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal., B, 31 (2001) 145–157.
  5. E. Sudova, J. Machova, Z. Svobodova, T. Vesely, Negative effects of malachitegreen and possibilities of its replacement in the treatment of fish eggs and fish: a review, Med. Vet., 52 (2007) 527–539.
  6. Z. Wang, M. Xue, K. Huang, Z. Liu, Textile Dyeing Wastewater Treatment, P. Hauser, Ed., Advances in Treating Textile Effluent, InTechOpen, China, 2011, pp. 91–116.
  7. K. Sarayu, S. Sandhya, Current technologies for biological treatment of textile wastewater–a review, Appl. Biochem. Biotechnol.,167 (2012) 645–661.
  8. K.M.A. Quader, Treatment of textile wastewater with chlorine: an effective method, Chem. Eng. Res. Bull., 14 (2010) 59–63.
  9. M. Dükkancı, G. Gündüz, Ultrasonic degradation of oxalic acid in aqueous solutions, Ultrason. Sonochem., 13 (2006) 517–522
  10. Q. Wang, S. Tian, P. Ning, Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene, Ind. Eng. Chem. Res.,53 (2014) 643–649.
  11. O. Hamdaoui, M. Chiha, E. Naffrechoux, Ultrasound-assisted removal of malachite green from aqueous solution by dead pine needles, Ultrason. Sonochem.,15 (2008) 799–807.
  12. S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles–theoretical study, Ultrason. Sonochem., 20 (2013) 815–819.
  13. Z. Boutamine, O. Hamdaoui, S. Merouani,Probing the radical chemistry and the reaction zone during the sonodegradation of endocrine disruptor 2-phenoxyethanol in water, Ultrason. Sonochem., 41 (2018) 521–526.
  14. G. Wen, S.J. Wang, J. Ma, T.L. Huang, Z.Q. Liu, L. Zhao, J.L. Xu, Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition, J. Hazard. Mater., 275 (2014) 193–199.
  15. A. Asghar, A. Aziz, A. Raman, W. Mohd, A. Wan, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Cleaner Prod., 87 (2015) 826–838.
  16. M.A. Pierrard, P. Kestemont, E. Delaive, M. Dieu, M. Raes, F. Silvestre, Malachite green toxicity assessed on Asian catfish primary cultures of peripheral blood mononuclear cells by a proteomic analysis, Aquat. Toxicol., 114–115 (2012) 142–152.
  17. I. Boukerche, N. Habbache, N. Alane, S. Djerad, L. Tifouti, Dissolution of cobalt from CoO/Al2O3 catalyst with mineral acids, Ind. Eng. Chem. Res., 49 (2010) 6514–6520.
  18. R. Larba, I. Boukerche, N. Alane, N. Habbache, S. Djerad, L. Tifouti, Citric acid as an alternative lixiviant for zinc oxide dissolution, Hydrometallurgy, 134–135 (2013) 117–123.
  19. D. Chen, X. Jiao, G. Cheng, Hydrothermal synthesis of zinc oxide powders with different morphologies, Solid State Commun., 113 (2000) 363–366.
  20. S.J. Peaton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Superlattices Microstruct., 34 (2003) 3–32.
  21. J.Q. Hu, X.L. Ma, Z.Y. Xie, N.B. Wong, C.S. Lee, S.T. Lee, Characterization of zinc oxide crystal whiskers grown by thermal evaporation, Chem. Phys. Lett., 344 (2000) 97–100.
  22. I. Boukerche, S. Djerad, L. Benmansour, L. Tifouti, K. Saleh, Degradability of aluminum in acidic and alkaline solutions, Corros. Sci., 78 (2014) 343–352.
  23. W.J. Li, E.W. Shi, W.Z. Zhong, Z. Yin, Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth, 203 (1999) 186–196.
  24. C. Lu, C. Yeh, Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceram. Int., 26 (2000) 351–357.
  25. B.G. Wang, E.W. Shi, W.Z. Zhong, Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol., 33 (1998) 937–941.
  26. L. Chetibi, A. Achour, J. Peszke, D. Hamana, S. Achour, Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet, J. Mater. Sci., 49 (2014) 621–632.
  27. O. Hamdaoui, E. Naffrechoux, Sonochemical and photosonochemical degradation of 4-chlorophenol in aqueous media, Ultrason. Sonochem.,15 (2008) 981–987.
  28. M. Chiha, O. Hamdaoui, F. Ahmed Chekkat, C. Pétrier, Study on ultrasonically assisted emulsification and recovery of copper(II) from wastewater using an emulsion liquid membrane process, Ultrason. Sonochem., 17 (2010) 318–325.
  29. Q.P. Isariebel, J.L. Carine, J.H. Ulises-Javier, W. Anne-Marie, D. Henri, Sonolysis of levodopa and paracetamol in aqueous solutions, Ultrason. Sonochem., 16 (2009) 610–616.
  30. T. Hongo, M. Moriura, Y. Hatada, H. Abiko, Simultaneous methylene blue adsorption and pH neutralization of contaminated water by rice husk ash, ACS Omega, 6 (2021) 21604–21612.
  31. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants, Composites, Part B, 174 (2019) 106930.
  32. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati- Niasari, Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity, Ultrason. Sonochem., 42 (2018) 171–182.
  33. F. Davar, M. Salavati-Niasari, Z. Fereshteh, Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor, J. Alloys Compd., 496 (2010) 638–643.
  34. M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite, J. Mol. Liq., 229 (2017) 293–299.
  35. M. Ghiyasiyan-Arani, M. Salavati-Niasari, Enhanced photodegradation of dye in wastewater using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization, Ultrason. Sonochem., 39 (2017) 494–503.
  36. M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, M. Salavati-Niasari, Synthesis and characterization of CeO2 nanoparticles via hydrothermal route, J. Ind. Eng. Chem., 21 (2015) 1301–1305.
  37. T. Gholami, M. Salavati-Niasari, S. Varshoy, Electrochemical hydrogen storage capacity and optical properties of NiAl2O4/NiO nanocomposite synthesized by green method, Int. J. Hydrogen Energy, 42 (2017) 5235–5245.
  38. A. Francony, C. Pétrier, Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies: 20 kHz and 500 kHz, Ultrason. Sonochem., 3 (1996) S77–S82.
  39. R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Application of ultrasound-aided method for the synthesis of NdVO4 nano-photocatalyst and investigation of eliminate dye in contaminant water, Ultrason. Sonochem., 42 (2018) 201–211.
  40. K. Krishnamoorthy, S.J. Kim, Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for super capacitor applications, Mater. Res. Bull., 48 (2013) 3136–3139.
  41. H.K. Farag, R.M.M. Aboelenin, N.A. Fathy, Photodegradation of methyl orange dye by ZnO loaded onto carbon xerogels composites, Asia-Pac. J. Chem. Eng., 12 (2017) 4–12.
  42. S.M. El-Khouly, G.M. Mohamed, N.A. Fathy, G.A. Fagal, Effect of nanosized CeO2 or ZnO loading on adsorption and catalytic properties of activated carbon, Adsorpt. Sci. Technol., 35 (2017) 774–788.
  43. N.N. Fathima, R. Aravindhan, J.R. Rao, B.U. Nair, Dye house wastewater treatment through advanced oxidation process using Cu-exchanged Y zeolite: a heterogeneous catalytic approach, Chemosphere, 70 (2008) 1146–1151.
  44. Z. Sharifalhoseini, M.H. Entezari, R. Jalal, Direct and indirect sonication affect differently the microstructure and the morphology of ZnO nanoparticles: optical behavior and its antibacterial activity, Ultrason. Sonochem., 27 (2015) 466–473.
  45. J. Zhang, L. Sun, H. Pan, C. Liao, C. Yan, ZnO nanowires fabricated by a convenient route, New J. Chem., 26 (2002) 33–34.
  46. S.M. Haile, D.W. Johnson, G.H. Wiseman, H.K. Bowen, Aqueous precipitation of spherical zinc oxide powders for varistor applications, J. Am. Ceram. Soc., 72 (1989) 2004–2008.
  47. K. Sue, K. Kimura, M. Yamamoto, K. Arai, Rapid hydrothermal synthesis of ZnO nanorods without organics, Mater. Lett., 58 (2004) 3350–3352.
  48. E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method, J. Cryst. Growth, 260 (2004) 166–170.
  49. M. Yoshimura, Importance of soft solution processing for advanced inorganic materials, J. Mater. Res., 13 (1998) 796–802.
  50. S. Koda, T. Kimura, T. Kondo, H. Mitome, A standard method to calibrate sonochemical efficiency of an individual reaction system, Ultrason. Sonochem., 10 (2003) 149–156.
  51. C. Guoliang, N. Xiaodong, N. Timothée, Lattice parameter dependence on long‐range ordered degree during orderdisorder transformation, Intermetallics, 12 (2004) 733–739.
  52. V. Leena Bora, K.R. Mewada, Photocatalytic decolouration, degradation and disinfection capability of
    Ag2CO3/ZnO in natural sunlight, J. Indian Chem. Soc., 99 (2022) 100311, doi: 10.1016/j.jics.2021.100311.
  53. A. Bhirud, S. Sathaye, R. Waichal, C.J. Park, B. Kale, In-situ preparation of N–ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high-performance supercapacitor electrode, J. Mater. Chem., 3 (2015) 17050–17063.
  54. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, K.M. Garadkar, Room temperature synthesis of CdS nanoflakes for photocatalytic properties, J. Mater. Sci. - Mater. Electron., 25 (2014) 1887–1892.
  55. W. Changle, Q. Xueliang, C. Jianguo, W. Hongshui, T. Fatang, L. Shitao, A novel chemical route to prepare Zn nanoparticles, Mater. Lett., 60 (2006) 1828–1832.
  56. S.K.N. Ayudhya, P. Tonto, O. Mekasuwandumrong, V. Pavarajarn, P. Praserthdam, Solvothermal synthesis of ZnO with various aspect ratios using organic solvents, Cryst. Growth Des., 6 (2006) 2446–2450.
  57. M.A. Ismail, K.K. Taha, A. Modwi, L. Khezami, ZnO nanoparticles: surface and X-ray profile analysis, J. Ovonic Res.,14 (2018) 381–393.
  58. T. Pandiyarajan, B. Karthikeyan, Cr doping induced structural, phonon and excitonic properties of ZnO nanoparticles, J. Nanopart. Res., 14 (2012) 647, doi: 10.1007/s11051-011-0647-x.
  59. S. Kuśnieruk, J. Wojnarowicz, A. Chodara, T. Chudoba, S. Gierlotka, W. Lojkowski, Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles, Beilstein J. Nanotechnol., 7 (2016) 1586–1601.
  60. V. Bolis, B. Fubini, E. Giamello, Effect of form on the surface reactivity of differently prepared zinc oxides, J. Chem. Soc., Faraday Trans. 1 F, 85 (1989) 855–867.
  61. M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst, J. Hazard. Mater., 33 (2006) 226–232.
  62. B.S. Bukallah, M.A. Rauf, S. Ashraf, Photocatalytic decoloration of Coomassie Brilliant Blue with titanium oxide, Dyes Pigm., 72 (2007) 353–356.
  63. C.H. Wu, Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems, Chemosphere, 57 (2004) 601–608.
  64. M. Qamar, M. Saquib, M. Muneer, Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide, Dyes Pigm., 65 (2005) 1–9.
  65. N. Daneshvar, M. Rabbani, N. Modirshahla, M.A. Behnajady, Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process, J. Photochem. Photobiol., 168 (2004) 39–45.
  66. R. Kumar, G. Kumar, A. Umar, ZnO nano-mushrooms for photocatalytic degradation of methyl orange, Mater. Lett., 97 (2013) 100–103.
  67. M. Bagheri, A.R. Mahjoub, B. Mehri, Enhanced photocatalytic degradation of Congo red by solvothermally synthesized CuInSe2–ZnO nanocomposites, R. Soc. Chem., 4 (2014) 21757–21764.
  68. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., 49 (2004) 1–14.
  69. M. Pera-Titus, V.G. Molina, M.A. Banos, J. Gimenez, S. Esplugas, Optimization of photocatalytic degradation of phenol using simple photocatalytic reactor, Appl. Catal., 47 (2004) 219–256.
  70. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater., 112 (2004) 269–278.
  71. I. Kazeminezhad, A. Sadollahkhani, Influence of pH on the photocatalytic activity of ZnO nanoparticles, J. Mater. Sci.: Mater. Electron., 27 (2016) 4206–4215.
  72. C. Xiaoqing, W. Zhansheng, L. Dandan, G. Zhenzhen, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes, Nanoscale Res. Lett., 12 (2017) 143,
    doi: 10.1186/s11671-017-1904-4.
  73. M.O. Fatehah, H.A. Aziz, S. Stoll, Stability of ZnO nanoparticles in solution. Influence of pH, dissolution, aggregation and disaggregation effects, J. Colloid Sci. Biotechnol., 3 (2014) 75–84.
  74. M. Malakootiana, A. Nasiria, A.N. Alibeigic, H. Mahdizadehb, M.A. Gharaghanic, Synthesis and stabilization of ZnO nanoparticles on a glass plate to study the removal efficiency of acid red 18 by hybrid advanced oxidation process (ultraviolet/ZnO/ultrasonic), Desal. Water Treat., 170 (2019) 325–336.
  75. H.J. Chial, H.B. Thompson, A.G. Splittgerber, A spectral study of the charge forms of Coomassie Blue G, Anal. Biochem., 209 (1993) 258–266.
  76. T. Parvin, N. Keerthiraj, I.A. Ibrahim, S. Phanichphant, K. Byrappa, Photocatalytic degradation of municipal wastewater and Brilliant Blue dye using hydrothermally synthesized surface-modified silver-doped ZnO designer particles, Int. J. Photoenergy, 2012 (2012) 670610, 8 pages.
  77. L.T.T. Nguyen, D. Viet N. Vo, L.T.H. Nguyen, A.T.T. Duong, H.Q. Nguyen, N.M. Chu, D.T.C. Nguyen, T.V. Tran, Synthesis, characterization, and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination, Environ. Technol. Innovation, 25 (2022) 102130, doi: 10.1016/j.eti.2021.102130.
  78. L. Pan, G.Q. Shen, J.W. Zhang, X.C. Wei, L. Wang, J.J. Zou, X. Zhang, TiO2-ZnO composite sphere decorated with ZnO clusters for effective charge, Ind. Eng. Chem. Res., 54 (2015) 7226–7232.
  79. R. Qin, F. Meng, M.W. Khan, B. Yu, H. Li, Z. Fan, J. Gong, Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts, Mater. Lett., 240 (2019) 84–87.
  80. M. Ahmad, W. Rehman, M.M. Khan, M.T. Qureshi, A. Gul, S. Haq, R. Ullah, A. Rab, F. Menaa, Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B, J. Environ. Chem. Eng., 9 (2021) 104725, doi: 10.1016/j.jece.2020.104725.
  81. M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst, J. Hazard. Mater., 133 (2006) 226–232.
  82. H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary, Efficient photocatalytic degradation of Acid Red 57 using synthesized ZnO nanowires, J. Chin. Chem. Soc., 66 (2018) 1–10.
  83. N. Verma, S. Bhatia, R.K. Bedi, Role of pH on electrical, optical and photocatalytic properties of ZnO based nanoparticles, J. Mater. Sci.: Mater. Electron., 28 (2017) 9788–9797.
  84. S. Verma, B.T. Rao, J. Jayabalan, S.K. Rai, D.M. Phase, A.K. Srivastava, R. Kaul, Studies on growth of Au cube-ZnO core-shell nanoparticles for photocatalytic degradation of methylene blue and methyl orange dyes in aqueous media and in presence of different Scavengers, J. Environ. Chem. Eng., 7 (2019) 103209, doi: 10.1016/j.jece.2019.103209.
  85. S. Verma, B.T. Rao, R. Singh, R. Kaul, Photocatalytic degradation kinetics of cationic and anionic dyes using Au–ZnO nanorods: role of pH for selective and simultaneous degradation of binary dye mixtures, Ceram. Int., 47 (2021) 34751–34764.