References

  1. E.W. de Menezes, E.C. Lima, B. Royer, F.E. de Souza, B.D. dos Santos, J.R. Gregório, T.M.H. Costa, Y. Gushikem, E.V. Benvenutti, Ionic silica-based hybrid material containing the pyridinium group used as an adsorbent for textile dye, J. Colloid Interface Sci., 378 (2012) 10–20.
  2. S. Shakoor, A. Nasar, Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low-cost adsorbent, J. Taiwan Inst. Chem. Eng., 66 (2016) 154–163.
  3. O. Yu. Golubeva, S.V. Pavlova, Adsorption of methylene blue from aqueous solutions by synthetic montmorillonites of different compositions, Glass Phys. Chem., 42 (2016) 207–213.
  4. E. Bazrafshan, F.K. Mostafapour, M.A. Zazouli, Methylene blue (cationic dye) adsorption into Salvadora persica stems ash, Afr. J. Adv. Biotechnol., 11 (2012) 16661–16668.
  5. M. El Khomri, N. El Messaoudi, A. Dbik, S. Bentahar, A. Lacherai, Efficient adsorbent derived from Argania Spinosa for the adsorption of cationic dye: kinetics, mechanism, isotherm and thermodynamic study, Surf. Interfaces, 20 (2020) 100601, doi: 10.1016/j.surfin.2020.100601.
  6. A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 15 (2016) 14–27.
  7. A. Asghar, A.A. Abdul Raman, W.M.A. Wan Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Cleaner Prod., 87 (2015) 826–838.
  8. E. Kordouli, K. Bourikas, A. Lycourghiotis, C. Kordulis, The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios, Catal. Today, 252 (2015) 128–135.
  9. Y. Al-Ani, Y. Li, Degradation of C.I. Reactive Blue 19 using combined iron scrap process and coagulation/flocculation by a novel Al(OH)3–polyacrylamide hybrid polymer, J. Taiwan Inst. Chem. Eng., 43 (2012) 942–947.
  10. V.M. Vučurović, R.N. Razmovski, U.D. Miljić, V.S. Puškaš, Removal of cationic and anionic azo dyes from aqueous solutions by adsorption on maize stem tissue, J. Taiwan Inst. Chem. Eng., 45 (2014) 1700–1708.
  11. S. Agarwal, I. Tyagi, V.K. Gupta, N. Ghasemi, M. Shahivand, M. Ghasemi, Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride, J. Mol. Liq., 218 (2016) 208–218.
  12. S. Moosavi, C.W. Lai, S. Gan, G. Zamiri, O.A. Pivehzhani, M.R. Johan, Application of efficient magnetic particles and activated carbon for dye removal from wastewater, ACS Omega, 5 (2020) 20684−20697.
  13. J. Zhang, T. Shang, X. Jin, J. Gao, Q. Zhao, Study of chromium(VI) removal from aqueous solution using nitrogen-enriched activated carbon based bamboo processing residues, RSC Adv., 5 (2015) 784–790.
  14. H.R. Lotfy, J. Misihairabgwi, M.M. Mutwa, The preparation of activated carbon from agroforestry waste for wastewater treatment, Afr. J. Pure Appl. Chem., 6 (2012) 149–156.
  15. M. Abbas, Performance of apricot stone to remove dyes from aqueous solutions – equilibrium, kinetics, isotherms modeling and thermodynamic studies, Mater. Today Proc., 31 (2020) 437–443.
  16. G.M. Santana, R.C.C. Lelis, J.B. Paes, R.M. Morais, C.R. Lopes, Activated carbon from bamboo (Bambusa vulgaris) for methylene blue removal: prediction to the environment applications, Cienc. Florestal, 28 (2018) 1179–1191.
  17. Y. Gokce, Z. Aktas, Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol, Appl. Surf. Sci., 313 (2014) 352–359.
  18. P.N.Y. Yek, W. Peng, C.C. Wong, R.K. Liew, Y.L. Ho, W.A.W. Mahari, E. Azwar, T.Q. Yuan, M. Tabatabaei, M. Aghbashlo, C. Sonne, S.S. Lam, Engineered biochar via microwave CO2 and steam pyrolysis to treat carcinogenic Congo red dye, J. Hazard. Mater., 395 (2020) 122636, doi: 10.1016/j.jhazmat.2020.122636.
  19. A.S. Franca, L.S. Oliveira, A.A. Nunes, C.C.O. Alves, Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents, Bioresour. Technol., 101 (2010) 1068–1074.
  20. W. Hu, S. Cheng, H. Xia, L. Zhang, X. Jiang, Q. Zhang, Q. Chen, Waste phenolic resin derived activated carbon by microwaveassisted KOH activation and application to dye wastewater treatment, Green Process. Synth., 8 (2019) 408–415.
  21. V.O. Njoku, K.Y. Foo, M. Asif, B.H. Hameed, Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption, Chem. Eng. J., 250 (2014) 198–204.
  22. K.Y. Foo, B.H. Hameed, Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation, Bioresour. Technol., 130 (2013) 696–702.
  23. A.V. Maldhure, J.D. Ekhe, Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption, Chem. Eng. J., 168 (2011) 1103–1111.
  24. C.H. Hsieh, S.L. Lo, W.H. Kuan, C.L. Chen, Adsorption of copper ions onto microwave stabilized heavy metal sludge, J. Hazard. Mater., 136 (2006) 338–344.
  25. S. Yuanyuan, Y. Qinyan, M. Yanpeng, G. Baoyu, G. Yuan, H. Lihui, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/Mn activation, J. Hazard. Mater., 265 (2014) 191–200.
  26. T. Tsoncheva, I. Genov, D. Panev, M. Dimitrov, B. Tsyntsarski, N. Velino, R. Ivanova, G. Issa, D. Kovacheva, T. Budinova, I. Mitov, N. Petrov, Cobalt- and iron-based nanoparticles hosted in SBA-15 mesoporous silica and activated carbon from biomass: effect of modification procedure, Solid State Sci., 12 (2015) 1293–2558.
  27. W. Wang, X. Wang, X. Wang, L. Yang, Z. Wu, S. Xia, J. Zhao, Cr(VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave, J. Environ. Sci. (China), 25 (2013) 1726–1735.
  28. M. Iwanow, T. Gärtner, V. Sieber, B. König, Activated carbon as catalyst support: precursors, preparation, modification and characterization, Beilstein J. Org. Chem., 16 (2020) 1188–1202.
  29. I. Izhab, M. Asmadi, N. Aishah, S. Amin, Methane dry reforming using oil palm shell activated carbon supported cobalt catalyst: multiresponse optimization, Int. J. Hydrogen Energy, 46 (2021) 24754–24767.
  30. A. Abdedayem, M. Guiza, A. Ouederni, Copper supported on porous activated carbon obtained by wetness impregnation: effect of preparation conditions on the ozonation catalyst’s characteristics, C.R. Chim., 18 (2015) 100–109.
  31. K. Derdour, C. Bouchelta, A. Khorief Naser-Eddine, M.S. Medjram, Removal of Cr(VI) from aqueous solutions by using activated carbon supported iron catalysts as efficient adsorbents, World J. Eng., 15 (2018) 3–13.
  32. L. Ai, M. Li, L. Li, Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics, J. Chem. Eng. Data, 56 (2011) 3475–3483.
  33. Z. Yang, Z. Zhao, X. Yang, Z. Ren, Iron-cobalt magnetic activated carbon as an effective adsorbent for the removal of methylene blue and Acid Blue 80, Nano Brief Rep. Rev., 16 (2021) 2150068, doi: 10.1142/S1793292021500685.
  34. W. Yang, H. Chen, X. Han, S. Ding, Y. Shan, Y. Liu, Preparation of magnetic Co-Fe modified porous carbon from agricultural wastes by microwave and steam activation for mercury removal, J. Hazard. Mater., 381 (2020) 120981, doi: 10.1016/j.jhazmat.2019.120981.
  35. S. Akbayrak, Z. Özçifçi, A. Tabak, Activated carbon derived from tea waste: a promising supporting material for metal nanoparticles used as catalysts in hydrolysis of ammonia borane, Biomass Bioenergy, 138 (2020) 105589, doi: 10.1016/j.biombioe.2020.105589.
  36. I. Boughaita, C. Bouchalta, M.S. Medjram, P. Magri, Activated carbon supported cobalt as efficiency adsorbent: application chemical agricultural pollutant 2,4-D herbicide removal from aqueous solution, Orient. J. Chem.: Int. Res. J. Pure Appl. Chem., 33 (2017) 2226–2236.
  37. S.Z. Mohammadi, Z. Darijani, M.A. Karimi, Fast and efficient removal of phenol by magnetic activated
    carbon-cobalt nanoparticles, J. Alloys Compd., 832 (2020) 154942, doi: 10.1016/j.jallcom.2020.154942.
  38. F. Mechati, C. Bouchelta, M.S. Medjram, R. Benrabaa, N. Ammouchi, Effect of hard and soft structure of different biomasses on the porosity development of activated carbon prepared under N2/microwave radiations, J. Environ. Chem. Eng., 3 (2015) 1928–1938.
  39. M.A. Ahmad, N. Azreen, A. Puad, O.S. Bello, Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation, Water Resour. Ind., 6 (2014) 18–35.
  40. J.M. Ahmed, S.K. Theydan, Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption, J. Anal. Appl. Pyrolysis, 105 (2014) 199–208.
  41. S. Mallakpour, F. Tabesh, Tragacanth gum-based hydrogel nanocomposites for the adsorption of methylene blue: comparison of linear and non-linear forms of different adsorption isotherm and kinetics models, Int. J. Biol. Macromol., 133 (2019) 754–766.
  42. A.R.P. Hidayat, D.O. Sulistiono, I.K. Murwani, B.F. Endrawati, H. Fansuri, L.L. Zulfa, R. Ediati, Linear and nonlinear isotherm, kinetic and thermodynamic behavior of methyl orange adsorption using modulated Al2O3@UiO-66 via acetic acid, J. Environ. Chem. Eng., 9 (2021) 106675, doi: 10.1016/j.jece.2021.106675.
  43. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and Interpretation of adsorption isotherms, J. Chem., 2017 (2017) 3039817, doi: 10.1155/2017/3039817.
  44. N. Bougdah, S. Bousba, Y. Belhocine, N. Messikh, Application of multilayer perceptron network and random forest models for modelling the adsorption of chlorobenzene on a modified bentonite by intercalation with hexadecyltrimethyl ammonium (HDTMA), React. Kinet. Mech. Catal., 135 (2021) 247–270.
  45. N. Azouaou, Z. Sadaoui, A. Djaafri, H. Mokaddem, Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 184 (2010) 126–134.
  46. C. Djilani, R. Zaghdoudi, A. Modarressid, M. Rogalskid, F. Djazia, A. Lallame, Elimination of organic micropollutants by adsorption on activated carbon prepared from agricultural waste, Chem. Eng. J., 189–190 (2012) 203–212.
  47. B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76 (2009) 127–133.
  48. N. Ghadir, A. Hossein, E. Mohamad, Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shellbased activated carbon, J. Taiwan Inst. Chem. Eng., 58 (2016) 357–365.
  49. O.P. Junior, A.L. Cazetta, R.C. Gomes, É.O. Barizão, I.P.A.F. Souza, A.C. Martins, T. Asefa, V.C. Almeida, Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: optimization using RSM and methylene blue adsorption, J. Anal. Appl. Pyrolysis, 105 (2014) 166–176.
  50. A.H. Jawad, A.S. Abdulhameed, L.D. Wilson, S. Shatir, A. Syed-Hassan, Z.A. ALOthman, M.R. Khan, High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: optimization and mechanism study, Chin. J. Chem. Eng., 32 (2021) 281–290.
  51. R. Md Salim, J. Asik, M.S. Sarjadi, Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark, Wood Sci. Technol., 55 (2021) 295–313.
  52. M.A. Ahmad, M.A. Eusoff, P.O. Oladoye, K.A. Adegoke, O.S. Bello, Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel, Chem. Data Collect., 28 (2020) 100426, doi: 10.1016/j.cdc.2020.100426.
  53. J. Srenscek-Nazzal, A. Kamińska, P. Miądlicki, A. Wróblewska, K. Kiełbasa, R.J. Wróbel, J. Serafin, B. Michalkiewicz, Activated carbon modification towards efficient catalyst for high valueadded products synthesis from alpha-pinene, Materials, 14 (2021) 7811, doi: 10.3390/ma14247811.
  54. S.A. Kosa, G. Al-Zhrania, S.M. Abdel, Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline, Chem. Eng. J., 181–182 (2012) 159–168.
  55. T.A. Khan, S.A. Chaudhry, I. Ali, Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution, J. Mol. Liq., 202 (2015) 165–175.
  56. Y.C. Sharma, Uma, S.N. Upadhyay, An economically viable removal of methylene blue by adsorption on activated carbon prepared from rice husk, Can. J. Chem. Eng., 89 (2011) 377–383.
  57. E. Misran, O. Bani, E.M. Situmeang, A.S. Purba, Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability, Alexandria Eng. J., 61 (2022) 1946–1955.
  58. M. Gouamid, M.R. Ouahrani, M.B. Bensaci, Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using Date Palm leaves, Energy Procedia, 36 (2013) 898–907.
  59. A.I. Abd-Elhamid, H.F. Aly, H.A.M. Soliman, A.A. El-Shanshory, Graphene oxide: follow the oxidation mechanism and its application in water treatment, J. Mol. Liq., 265 (2018) 226–237.
  60. A. El Amri, J. Bensalah, A. Idrissi, K. Lamya, A. Ouass, S. Bouzakraoui, A. Zarrouk, E. Rifi, A. Lebkiri, Adsorption of a cationic dye (methylene blue) by Typha Latifolia: equilibrium, kinetic, thermodynamic and DFT calculations, Chem. Data Collect., 38 (2022) 100834, doi: 10.1016/j.cdc.2022.100834.
  61. G.B. Kankılıc, A.Ü. Metin, I. Tüzün, Phragmites australis: an alternative biosorbent for basic dye removal, J. Ecol. Eng., 86 (2016) 85–94.
  62. B. Belhamdi, Z. Merzougui, M. Trari, A. Addoun, A kinetic, equilibrium and thermodynamic study of
    L-phenylalanine adsorption using activated carbon based on agricultural waste (date stones), J. Appl. Res. Technol., 14 (2016) 354–366.
  63. N.I.I. Zamri, S.L.N. Zulmajdi, N.Z.A. Daud, N.Z.A. Daud, A.H. Mahadi, E. Kusrini, A. Usman, Insight into the adsorption kinetics, mechanism, and thermodynamics of methylene blue from aqueous solution onto pectin-alginate-titania composite microparticles, SN Appl. Sci., 3 (2021) 222, doi: 10.1007/s42452-021-04245-9.
  64. T.S. Anirudhan, M. Ramachandran, Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay, J. Colloid Interface Sci., 299 (2006) 116–124.
  65. A.M. Chayida, M.J. Ahmed, Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms, kinetics, and thermodynamics studies, J. Environ. Chem. Eng., 3 (2015) 1592–1601.
  66. T. Akar, A.S. Ozcan, S. Tunali, A. Ozcan, Biosorption of a textile dye (Acid Blue 40) by cone biomass of Thuja orientalis: estimation of equilibrium, thermodynamic and kinetic parameters, Bioresour. Technol., 99 (2008) 3057–3065.
  67. M. Dogan, H. Abak, M. Alkan, Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters, J. Hazard. Mater., 164 (2009) 172–181.
  68. K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng., 74 (2017) 25–48.
  69. R. Elmoubarki, Adsorption of textile dyes on raw and decanted Moroccan clays: kinetics, equilibrium and thermodynamics, Water Resour. Ind., 9 (2015) 16–29.
  70. X. Tao, Y. Wu, Y. Wu, B. Zhang, H. Sha, L. Cha, N. Liu, Activated carbon-supported cobalt molybdate as a heterogeneous catalyst to activate peroxymonosulfate for removal of organic dyes, Appl. Organomet. Chem., 32 (2018) e4572, doi: 10.1002/ aoc.4572.
  71. H.N. Tran, Y.F. Wang, S.J. You, H.P. Chao, Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of π–π interactions, Process Saf. Environ. Prot., 107 (2017) 168–180.