References

  1. International Atomic Energy Agency, 2018, Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, Reference Data Series, IAEA-RDS-1/38.
  2. K. Obileke, H. Onyeaka, E.L. Meyer, N. Nwokolo, Microbial fuel cells, a renewable energy technology for bio-electricity generation: a mini-review, Electrochem. Commun., 125 (2021) 107003, doi: 10.1016/j.elecom.2021.107003.
  3. L.K.S. Gujjala, D. Dutta, P. Sharma, D. Kundu, D.-V.N. Vo, S. Kumar, A state-of-the-art review on microbial desalination cells, Chemosphere, 288 (2022) 132386, doi: 10.1016/j.chemosphere.2021.132386.
  4. B. Tartakovsky, M.F. Manuel, H. Wang, S.R. Guiot, High rate membraneless microbial electrolysis cell for continuous hydrogen production, Int. J. Hydrogen Energy, 34 (2009) 672–677.
  5. K. Sasaki, M. Morita, D. Sasaki, S. Hirano, N. Matsumoto, N. Ohmura, Y. Igarashi, Methanogenic communities on the electrodes of bioelectrochemical reactors without membranes, J. Biosci. Bioeng., 111 (2011) 47–49.
  6. R.D. Cusick, Y. Kim, B.E. Logan, Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells, Science, 335 (2012) 1474–1477.
  7. J.M. Pisciotta, Y. Zou, I.V. Baskakov, Light-dependent electrogenic activity of cyanobacteria, PLoS One, 5 (2011) e10821, doi: 10.1371/journal.pone.0010821.
  8. T. Jafary, A. Al-Mamun, H. Alhimali, M.S. Baawain, S. Rahman, W.A. Tarpeh, B.R. Dhar, B.H. Kim, Novel two-chamber tubular microbial desalination cell for bioelectricity production, wastewater treatment and desalination with a focus on self-generated pH control, Desalination, 481 (2020) 114358, doi: 10.1016/j.desal.2020.114358.
  9. M. Zahid, N. Savla, S. Pandit, V.K. Thakur, S.P. Jung, P.K. Gupta, R. Parsad, E. Marsili, Microbial desalination cell: desalination through conserving energy, Desalination, 521 (2022) 115381, doi: 10.1016/j.desal.2021.115381.
  10. S. Rahman, S.A. Siddiqi, A. Al-Mamun, T. Jafary, Sustainable leachate pre-treatment using microbial desalination cell for simultaneous desalination and energy recovery, Desalination, 532 (2022) 115708, doi: 10.1016/j.desal.2022.115708.
  11. Y. Lee, N. Nirmalakhandan, Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste, Bioresour. Technol., 102 (2011) 5831–5835.
  12. J. Greenman, A. Gálvez, L. Giusti, I. Ieropoulos, Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter, Enzyme Microb. Technol., 44 (2009) 112–119.
  13. S.A. Patil, V.P. Surakasi, S. Koul, S. Ijmulwar, A. Vivek, Y.S. Shouche, B.P. Kapadnis, Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber, Bioresour. Technol., 100 (2009) 5132–5139.
  14. S.E. Oh, B.E. Logan, Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies, Water Res., 39 (2005) 4673–4682.
  15. A.P. Borole, C.Y. Hamilton, In: V. Shah, Ed., Emerging Environmental Technologies, Volume II, Springer, Dordrecht, 2010, pp. 97–113. doi: 10.1007/978-90-481-3352-9_5
  16. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  17. Water Scarcity Clock, 2021. Available at https://www. worldwater.io (Accessed July 2021).
  18. H.T.D. Thi, T. Pasztor, D. Fozer, F. Manenti, A.J. Toth, Comparison of desalination technologies using renewable energy sources with life cycle, PESTLE, and multi-criteria decision analyses, Water, 13 (2021) 3023, doi: 10.3390/w13213023.
  19. A.H. Galama, Ion Exchange Membranes in Seawater Applications Processes and Characteristics, Ph.D. Thesis, Wageningen University, Wageningen, 2015.
  20. S. Bucs, Biofouling in Reverse and Forward Osmosis Membrane Systems, Ph.D. Thesis, Delft University of Technology, 2017.
  21. J.M. Amezaga, A. Amtmann, L. Lawton, M.A. Madsen, K. Minas, M.R. Templeton, biodesalination: a case study for applications of photosynthetic bacteria in water treatment, Plant Physiol., 164 (2014) 1661–1676.
  22. K. Minas, E. Karunakaran, T. Bond, C. Gandy, A. Honsbein, M. Madsen, J. Amezaga, A. Amtmann, M.R. Templeton, C.A. Biggs, L. Lawton, Biodesalination: an emerging technology for targeted removal of Na+ and Cl from seawater by cyanobacteria, Desal. Water Treat., 55 (2015) 2647–2668.
  23. M. Maru, E. Sahle-Demessie, F. Zewge, A review on biodesalination using halophytic microalgae: opportunities and challenges, Aqua, (2021), doi: 10.2166/aqua.2021.068.
  24. L.C. Castillo-Carvajal, B.E. Barragan-Huerta, J.L. Snaz-Martin, Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms, Environ. Sci. Pollut. Res., 21 (2014) 9578–9588.
  25. E. Sahle-Demessie, A. Aly Hassan, A.M. EI Badawy, Biodesalination of brackish and seawater using halophytic algae, Desalination, 465 (2019) 104–113.
  26. S. Kumar, H.D. Kumar, K.G. Babu, A study on bioelectricity generation from the sea water using microbial fuel cell, Int. J. Curr. Res. Rev., 4 (2012) 65–72.
  27. D. Bejjanki, K. Muthukumar, T.K. Radhakrishnan, A. Alagarsamy, A. Pugazhendhi, S.N. Mohamed, Simultaneous bioelectricity generation and water desalination using Oscillatoria sp. as biocatalyst in photosynthetic microbial desalination cell, Sci. Total Environ., 754 (2021) 142215, doi: 10.1016/j.scitotenv.2020.142215.
  28. A.G. Dickson, In: U. Riebesell, V.J. Fabry, L. Hansson, J.-P. Gattuso, Eds., Guide to Best Practices for Ocean Acidification Research and Data Reporting, Publications Office of the European Union, Luxembourg, 2010, pp. 17–40.
  29. J.E. Hallsworth, Water is a preservative of microbes, Microb. Biotechnol., (2021) 1–24,
    doi: 10.1111/1751-7915.13980.
  30. M.T. Madigan, J.M. Martiko, J. Parker, Brock Biology of Microorganisms, Prentice-Hall International Inc., New Jersey, 1997.
  31. D. Szatmari, P. Sarkany, B. Kocsis, T. Nagy, A. Miseta, S. Barko, B. Longauer, R.C. Robinson, M. Nyitrai, Intracellular ion concentrations and cation-dependent remodelling of bacterial MreB assemblies, Sci. Rep., 10 (2020) 12002, doi: 10.1038/s41598-020-68960-w.
  32. J. Marmur, A procedure for the isolation of deoxyribonucleic acid from microorganisms, J. Mol. Biol., 3 (1961) 208–218.
  33. J.A. Frank, C.I. Reich, S. Sharma, J.S. Weisbaum, B.A. Wilson, G.J. Olsen, Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes, Appl. Environ. Microbiol., 74 (2008) 2461–2470.
  34. Y.L. Chen, C.C. Lee, Y.L. Lin, K.M. Yin, C.L. Ho, L. Tsunglin, Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples, BMC Bioinf., (2015),
    doi: 10.1186/1471-2105-16-S18-S13.
  35. O.S. Kim, Y.J. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won, J. Chun, Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species, Int. J. Syst. Evol. Microbiol., 62 (2012) 716–721.
  36. M. Kim, J. Chun, 16S rRNA gene-based identification of bacteria and archaea using the EzTaxon server, Methods Microbiol., 41 (2014) 61–74.
  37. H.D. Ibrahim, P. Xue, E.A.B. Eltahir, Multiple salinity equilibria and resilience of Persian/Arabian gulf basin salinity to brine discharge, Front. Mar. Sci., 7 (2020), doi: 10.3389/fmars.2020.00573.
  38. K. Rabaey, G. Lissens, S.D. Siciliano, W. Verstraete, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25 (2003) 1531–1535.
  39. K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol., 70 (2004) 5373–5382.
  40. N.J. Koffi, S. Okabe, High voltage generation from wastewater by microbial fuel cells equipped with a newly designed low voltage booster multiplier (LVBM), Sci. Rep., 10 (2020) 18985,
    doi: 10.1038/s41598-020-75916-7.
  41. T. Jafary, A. Al-Mamun, H. Alhimali, M.S. Baawain, M.S. Rahman, S. Rahman, B.R. Dhar, M. Aghbashlo, M. Tabatabaei, Enhanced power generation and desalination rate in a novel quadruple microbial desalination cell with a single desalination chamber, Renewable Sustainable Energy Rev., 127 (2020) 109855, doi: 10.1016/j.rser.2020.109855.
  42. S. Pandit, N. Salva, S.P. Jung, In: R. Abbassi, A. Kumar Yadav, F. Khan, Integrated Microbial Fuel Cells for Wastewater Treatment, Butterworth-Heinemann, 2020, pp. 349–368. doi: 10.1016/B978-0-12-817493-7.00016-3