References

  1. J. Winter, H.E. Wray, M. Schulz, R. Vortisch, B. Barbeau, P.R. Bérubé, The impact of loading approach and biological activity on NOM removal by ion exchange resins, Water Res., 134 (2018) 301–310.
  2. M. Amano, J. Lohwacharin, A. Dubechot, S. Takizawa, Performance of integrated ferrate–polyaluminum chloride coagulation as a treatment technology for removing freshwater humic substances, J. Environ. Manage., 212 (2018) 323–331.
  3. A. Keucken, X.F. Liu, B.Y. Lian, Y. Wang, K.M. Persson, G. Leslie, Simulation of NOM removal by capillary NF: a numerical method for full-scale plant design, J. Membr. Sci., 555 (2018) 229–236.
  4. M. Kumar, H.M. Baniowda, N. Sreedhar, E. Curcio, H.A. Arafat, Fouling resistant, high flux, charge tunable hybrid ultrafiltration membranes using polymer chains grafted graphene oxide for NOM removal, Chem. Eng. J., 408 (2021) 127300, doi: 10.1016/j.cej.2020.127300.
  5. I. Levchuk, J.J.R. Márquez, M. Sillanpää, Removal of natural organic matter (NOM) from water by ion exchange – a review, Chemosphere, 192 (2018) 90–104.
  6. R. Sudoh, M.S. Islam, K. Sazawa, T. Okazaki, N. Hata, S. Taguchi, H. Kuramitz, Removal of dissolved humic acid from water by coagulation method using polyaluminum chloride (PAC) with calcium carbonate as neutralizer and coagulant aid, J. Environ. Chem. Eng., 3 (2015) 770–774.
  7. Z.C. Hua, X.J. Kong, S.D. Hou, S.Q. Zou, X.B. Xu, H. Huang, J.Y. Fang, DBP alteration from NOM and model compounds after UV/persulfate treatment with post chlorination, Water Res., 158 (2019) 237–245.
  8. H.N.P. Dayarathne, M.J. Angove, R. Aryal, H.A. Naga, B. Mainali, Removal of natural organic matter from source water: review on coagulants, dual coagulation, alternative coagulants, and mechanisms, J. Water Process Eng., 40 (2021) 101820, doi: 10.1016/j.jece.2015.04.007.
  9. C.C. Davis, M. Edwards, Role of calcium in the coagulation of NOM with ferric chloride, Environ. Sci. Technol., 51 (2017) 11652–11659.
  10. Y.P. Xu, T. Chen, Z.Q. Liu, S.J. Zhu, F.Y. Cui, W.X. Shi, The impact of recycling alum-humic-floc (AHF) on the removal of natural organic materials (NOM): behavior of coagulation and adsorption, Chem. Eng. J., 284 (2016) 1049–1057.
  11. B. Zhang, S.Y. Avsar, M.K. Corliss, M. Chung, N.J. Cho, Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers, J. Hazard. Mater., 339 (2017) 264–273.
  12. Y.Q. Guo, H. Liang, G.B. Li, D.L. Xu, Z.S. Yan, R. Chen, J. Zhao, X.B. Tang, A solar photo-thermochemical hybrid system using peroxydisulfate for organic matters removal and improving ultrafiltration membrane performance in surface water treatment, Water Res., 188 (2021) 116482,
    doi: 10.1016/j.watres.2020.116482.
  13. T. Mantel, P. Benne, M. Ernst, Electrically conducting duplexcoated gold-PES-UF membrane for capacitive organic fouling mitigation and rejection enhancement, J. Membr. Sci., 620 (2021) 118831, doi: 10.1016/j.memsci.2020.118831.
  14. M. Kohantorabi, S. Giannakis, M.R. Gholami, L. Feng, C. Pulgarin, A systematic investigation on the bactericidal transient species generated by photo-sensitization of natural organic matter (NOM) during solar and photo Fenton disinfection of surface waters, Appl. Catal., B, 244 (2019) 983–995.
  15. Y. Zhang, Z.L. Lu, Z.Y. Zhang, B.Y. Shi, C. Hu, L. Lyu, P.X. Zuo, J. Metz, H.B. Wang, Heterogeneous Fenton-like reaction followed by GAC filtration improved removal efficiency of NOM and DBPs without adjusting pH, Sep. Purif. Technol., 260 (2021) 118234, doi: 10.1016/j.seppur.2020.118234.
  16. M. Schulz, J. Winter, H. Wray, B. Barbeau, P. Bérubé, Biologically active ion exchange (BIEX) for NOM removal and membrane fouling prevention, Water Sci. Technol. Water Supply, 17 (2017) 1178–1184.
  17. I. Caltran, L.C. Rietveld, H.L. Shorney-Darby, S.G.J. Heijman, Separating NOM from salts in ion exchange brine with ceramic nanofiltration, Water Res., 179 (2020) 115894, doi: 10.1016/j.watres.2020.115894.
  18. N. Xue, X. Wang, F.R. Zhang, Y. Wang, Y.B. Chu, Y. Zheng, Effect of SiO2 nanoparticles on the removal of natural organic matter (NOM) by coagulation, Environ. Sci. Pollut. Res., 23 (2016) 11835–11844.
  19. S.J. Köhler, E. Lavonen, A. Keucken, P. Schmitt-Kopplin, T. Spanjer, K. Persson, Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment, Water Res., 89 (2016) 232–240.
  20. X. Wang, J. Wang, Y. Zhang, Q. Shi, H. Zhang, Y. Zhang, M. Yang, Characterization of unknown iodinated disinfection by-products during chlorination/chloramination using ultrahigh resolution mass spectrometry, Sci. Total Environ., 554–555 (2016) 83–88.
  21. Y. Pan, Y. Wang, A. Li, B. Xu, Q. Xian, C. Shang, P. Shi, Q. Zhou, Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection by-products in drinking water, Water Res., 112 (2017) 129–136.
  22. Y.M. Qi, N.N. Wu, Z.N. Tu, V.K. Sharma, Z.B. Wei, D.M. Zhou, Z.Y. Wang, R.J. Qu, Enhanced removal of ammonia in Fe(VI)/ Br– oxidation system: kinetics, transformation mechanism and theoretical calculations, Water Res., 222 (2022) 118953, doi: 10.1016/j.watres.2022.118953.
  23. Q. Zheng, N.N. Wu, R.J. Qu, G. Albasher, W.M. Cao, B.B. Li, N. Alsultan, Z.Y. Wang, Kinetics and reaction pathways for the transformation of 4-tert-butylphenol by ferrate(VI), J. Hazar. Mater., 401 (2020) 123405, doi: 10.1016/j.jhazmat.2020.123405.
  24. R. Prucek, J. Tucek, J. Kolarik, I. Hušková, J. Filip, R.S. Varma, V.K. Sharma, R. Zbořil, Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides, Environ. Sci. Technol., 49 (2015) 2319–2327.
  25. M.B. Feng, X.H. Wang, J. Chen, R.J. Qu, Y.X. Sui, L. Cizmas, Z.Y. Wang, V.K. Sharma, Degradation of fluoroquinolone antibiotics by ferrate(VI): effects of water constituents and oxidized products, Water Res., 103 (2016) 48–57.
  26. J. Chen, N.N. Wu, X.X. Xu, R.J. Qu, C.G. Li, X.X. Pan, Z.B. Wei, Z.Y. Wang, Fe(VI)-mediated single-electron coupling processes for the removal of chlorophenol: a combined experimental and computational study, Environ. Sci. Technol., 52 (2018) 12592–12601.
  27. J.F. Zhao, Q. Wang, Y.S. Fu, B. Peng, G.F. Zhou, Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2+, Environ. Sci. Pollut. Res., 25 (2018) 22998–23008.
  28. K. Manoli, G. Nakhla, M.B. Feng, V.K. Sharma, A.K. Ray, Silica gel-enhanced oxidation of caffeine by ferrate(VI), Chem. Eng. J., 330 (2017) 987–994.
  29. E. Neubauer, F.V.D. Kammer, T. Hofmann, Using FLOWFFF and HPSEC to determine trace metal-colloid associations in wetland runoff, Water Res., 47 (2013) 2757–2769.
  30. M.S. Rahman, G.A. Gagnon, Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality, Water Res., 48 (2014) 137–147.
  31. B.C. Cao, B.Y. Gao, X. Liu, M.M. Wang, Z.L. Yang, Q.Y. Yue, The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment, Water Res., 45 (2011) 6181–6188.
  32. J. Bridgeman, B. Jefferson, S.A. Parsons, Computational fluid dynamics modeling of flocculation in water treatment: a review, Eng. Appl. Comput. Fluid Mech., 3 (2009) 220–241.
  33. E. Gasparini, S.C. Tarantinoa, P. Ghignab, M.P. Riccardia, E.I. Cedillo-Gonzálezc, C. Siligardic, M. Zema, Thermal dehydroxylation of kaolinite under isothermal conditions, Appl. Clay Sci., 80–81 (2013) 417–425.
  34. M.B. Ogundiran, S. Kumar, Synthesis and characterization of geopolymer from Nigerian Clay, Appl. Clay Sci., 108 (2015) 173–181.