References

  1. D. Zarzo, D. Prats, Desalination and energy consumption. What can we expect in the near future?, Desalination, 427 (2018) 1–9.
  2. L. Gu, X.G. Chen, X.D. Liu, W. Liu, Ion distribution in saltwater under high-voltage static electric field, Adv. Mater. Res., 361–363 (2012) 865–869.
  3. L. Gu, Simulation of ion distribution on both sides of insulation film in saltwater under static electric field, Adv. Mater. Res., 538–541 (2012) 110–115.
  4. T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Separation of copper ions by electrodialysis using Taguchi experimental design, Desalination, 169 (2004) 21–31.
  5. T. Mohammadi, A. Kaviani, Water shortage and seawater desalination by electrodialysis, Desalination, 158 (2003) 267–270.
  6. P. Murray, Electrodialysis and Electrodialysis Reversal, AWWA Man. M38, Colorado, 1999.
  7. W.S.W. Ho, K.K. Sirkar, Membrane Handbook, Springer Science Business+Media, New York, 1992.
  8. P. Murray, Electrodialysis and Electrodialysis Reversal - Manual of Water Supply Practices, American Water Works Association, Colorado, 1995.
  9. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
  10. M. Sheikholeslami, M.A. Sheremet, A. Shafee, Z. Li, CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls, J. Therm. Anal. Calorim., 138 (2019) 573–581.
  11. I.G. Tironi, R. Sperb, P.E. Smith, W.F. Van Gunsteren, A generalized reaction field method for molecular dynamics simulations, J. Chem. Phys., 102 (1995) 5451–5459.
  12. F. Sofos, T.E. Karakasidis, D. Spetsiotis, Molecular dynamics simulations of ion separation in nano-channel water flows using an electric field, Mol. Simul., 45 (2019) 1395–1402.
  13. S. Murad, The role of external electric fields in enhancing ion mobility, drift velocity, and drift-diffusion rates in aqueous electrolyte solutions, J. Chem. Phys., 134 (2011) 1–7.
  14. A. Morro, R. Drouot, G.A. Maugin, Thermodynamics of polyelectrolyte solutions in an electric field, J. Non-Equilib. Thermodyn., 10 (1985) 131–144.
  15. K.A. Maerzke, J. Ilja Siepmann, Effects of an applied electric field on the vapor-liquid equilibria of water, methanol, and dimethyl ether, J. Phys. Chem. B, 114 (2010) 4261–4270.
  16. M.J. Gordon, X. Huang, S.L. Pentoney, R.N. Zare, Capillary electrophoresis, Science, 242 (1988) 224–228.
  17. H.J. Bakker, Structural dynamics of aqueous salt solutions, Chem. Rev., 108 (2008) 1456−1473.
  18. M.R. Wright, An Introduction to Aqueous Electrolyte Solutions, John Wiley & Sons, England, 2007.
  19. F. Alnaimat, E. Alhseinat, F. Banat, V. Mittal, Electromagneticmechanical desalination: mathematical modeling, Desalination, 380 (2016) 75–84.
  20. V. Bartzis, I.E. Sarris, A theoretical model for salt ion drift due to electric field suitable to seawater desalination, Desalination, 473 (2020) 114163, doi: 10.1016/j.desal.2019.114163.
  21. V. Bartzis, I.E. Sarris, Electric field distribution and diffuse layer thickness study due to salt ion movement in water desalination, Desalination, 490 (2020) 114549, doi: 10.1016/j.desal.2020.114549.
  22. V. Bartzis, I.E. Sarris, Time evolution study of the electric field distribution and charge density due to ion movement in salty water, Water, 13 (2021) 2185, doi: 10.3390/w13162185.
  23. V. Bartzis, G. Ninos, I.E. Sarris, Water purification from heavy metals due to electric field ion drift, Water, 14 (2022) 2372, doi: 10.3390/w14152372.
  24. Z. Boulahia, A. Wakif, R. Sehaqui, Modeling of free convection heat transfer utilizing nanofluid inside a wavy enclosure with a pair of hot and cold cylinders, Front. Heat Mass Transfer, 8 (2017) 1–10.
  25. Z. Boulahia, A. Wakif, A.J. Chamkha, R. Sehaqui, Numerical study of natural and mixed convection in a square cavity filled by a Cu-water nanofluid with circular heating and cooling cylinders, Mech. Ind., 18 (2017) 502, doi: 10.1051/meca/2017021.
  26. Z. Boulahia, A. Wakif, R. Sehaqui, Numerical study of mixed convection of the nanofluids in two-sided lid-driven square cavity with a pair of triangular heating cylinders, J. Eng., 2016 (2016) 1–8.
  27. Z. Boulahia, A. Wakif, A.J. Chamkha, C.H. Amanulla, R. Sehaqui, Effects of wavy wall amplitudes on mixed convection heat transfer in a ventilated wavy cavity filled by copper-water nanofluid containing a central circular cold body, J. Nanofluids, 8 (2019) 1170–1178.
  28. Z. Boulahia, A. Wakif, A.J. Chamkha, R. Sehaqui, Numerical study of forced, mixed and natural convection of nanofluids inside a ventilated cavity containing different shapes of cold block, J. Nanofluids, 8 (2019) 1–9.
  29. Z. Boulahia, A. Wakif, R. Sehaqui, Numerical modeling of natural convection heat transfer in a wavy wall enclosure filled by a Cu-water nanofluid with a square cooler, J. Nanofluids, 6 (2017) 324–333.
  30. Z. Boulahia, A. Wakif, R. Sehaqui, Finite volume analysis of free convection heat transfer in a square enclosure filled by a cu-water nanofluid containing different shapes of heating cylinder, J. Nanofluids, 6 (2017) 761–768.
  31. Z. Boulahia, C. Boulahia, R. Sehaqui, Two-phase computation of free convection and entropy generation inside an enclosure filled by a hybrid Al2O3-TiO2-Cu water nanofluid having a corrugated heat source using the generalized Buongiorno’s mathematical model: employ, Mater. Today Proc., 30 (2020) 1056–1067.
  32. Z. Boulahia, A. Wakif, R. Sehaqui, Heat transfer and Cu-water nanofluid flow in a ventilated cavity having central cooling cylinder and heated from the below considering three different outlet port locations, Front. Heat Mass Transfer, 11 (2018) 1–10.
  33. M. Sheikholeslami, T. Hayat, A. Alsaedi, S. Abelman, Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity, Int. J. Heat Mass Transfer, 108 (2017) 2558–2565.
  34. F. Garoosi, S. Garoosi, K. Hooman, Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model, Powder Technol., 268 (2014) 279–292.
  35. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor and Francis, London, 1980.
  36. D.B. Spalding, A novel finite difference formulation for differential expressions involving both first and second derivatives, Int. J. Numer. Methods Eng., 4 (1972) 551–559.
  37. G.A. Sheikhzadeh, M. Dastmalchi, H. Khorasanizadeh, Effects of nanoparticles transport mechanisms
    on Al2O3-water nanofluid natural convection in a square enclosure, Int. J. Therm. Sci., 68 (2013) 79–93.
  38. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46 (2003) 3639–3653.