References
- D. Zarzo, D. Prats, Desalination and energy consumption. What
can we expect in the near future?, Desalination, 427 (2018) 1–9.
- L. Gu, X.G. Chen, X.D. Liu, W. Liu, Ion distribution in saltwater
under high-voltage static electric field, Adv. Mater. Res.,
361–363 (2012) 865–869.
- L. Gu, Simulation of ion distribution on both sides of insulation
film in saltwater under static electric field, Adv. Mater. Res.,
538–541 (2012) 110–115.
- T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Separation
of copper ions by electrodialysis using Taguchi experimental
design, Desalination, 169 (2004) 21–31.
- T. Mohammadi, A. Kaviani, Water shortage and seawater
desalination by electrodialysis, Desalination, 158 (2003) 267–270.
- P. Murray, Electrodialysis and Electrodialysis Reversal,
AWWA Man. M38, Colorado, 1999.
- W.S.W. Ho, K.K. Sirkar, Membrane Handbook, Springer Science
Business+Media, New York, 1992.
- P. Murray, Electrodialysis and Electrodialysis Reversal -
Manual of Water Supply Practices, American Water Works
Association, Colorado, 1995.
- M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser,
Water desalination via capacitive deionization: what is it and
what can we expect from it?, Energy Environ. Sci., 8 (2015)
2296–2319.
- M. Sheikholeslami, M.A. Sheremet, A. Shafee, Z. Li, CVFEM
approach for EHD flow of nanofluid through porous medium
within a wavy chamber under the impacts of radiation and
moving walls, J. Therm. Anal. Calorim., 138 (2019) 573–581.
- I.G. Tironi, R. Sperb, P.E. Smith, W.F. Van Gunsteren,
A generalized reaction field method for molecular dynamics
simulations, J. Chem. Phys., 102 (1995) 5451–5459.
- F. Sofos, T.E. Karakasidis, D. Spetsiotis, Molecular dynamics
simulations of ion separation in nano-channel water flows
using an electric field, Mol. Simul., 45 (2019) 1395–1402.
- S. Murad, The role of external electric fields in enhancing ion
mobility, drift velocity, and drift-diffusion rates in aqueous
electrolyte solutions, J. Chem. Phys., 134 (2011) 1–7.
- A. Morro, R. Drouot, G.A. Maugin, Thermodynamics of
polyelectrolyte solutions in an electric field, J. Non-Equilib.
Thermodyn., 10 (1985) 131–144.
- K.A. Maerzke, J. Ilja Siepmann, Effects of an applied electric
field on the vapor-liquid equilibria of water, methanol, and
dimethyl ether, J. Phys. Chem. B, 114 (2010) 4261–4270.
- M.J. Gordon, X. Huang, S.L. Pentoney, R.N. Zare, Capillary
electrophoresis, Science, 242 (1988) 224–228.
- H.J. Bakker, Structural dynamics of aqueous salt solutions,
Chem. Rev., 108 (2008) 1456−1473.
- M.R. Wright, An Introduction to Aqueous Electrolyte Solutions,
John Wiley & Sons, England, 2007.
- F. Alnaimat, E. Alhseinat, F. Banat, V. Mittal, Electromagneticmechanical
desalination: mathematical modeling, Desalination,
380 (2016) 75–84.
- V. Bartzis, I.E. Sarris, A theoretical model for salt ion drift due
to electric field suitable to seawater desalination, Desalination,
473 (2020) 114163, doi: 10.1016/j.desal.2019.114163.
- V. Bartzis, I.E. Sarris, Electric field distribution and diffuse
layer thickness study due to salt ion movement in water
desalination, Desalination, 490 (2020) 114549, doi: 10.1016/j.desal.2020.114549.
- V. Bartzis, I.E. Sarris, Time evolution study of the electric field
distribution and charge density due to ion movement in salty
water, Water, 13 (2021) 2185, doi: 10.3390/w13162185.
- V. Bartzis, G. Ninos, I.E. Sarris, Water purification from heavy
metals due to electric field ion drift, Water, 14 (2022) 2372,
doi: 10.3390/w14152372.
- Z. Boulahia, A. Wakif, R. Sehaqui, Modeling of free convection
heat transfer utilizing nanofluid inside a wavy enclosure with
a pair of hot and cold cylinders, Front. Heat Mass Transfer,
8 (2017) 1–10.
- Z. Boulahia, A. Wakif, A.J. Chamkha, R. Sehaqui, Numerical
study of natural and mixed convection in a square cavity filled
by a Cu-water nanofluid with circular heating and cooling
cylinders, Mech. Ind., 18 (2017) 502, doi: 10.1051/meca/2017021.
- Z. Boulahia, A. Wakif, R. Sehaqui, Numerical study of mixed
convection of the nanofluids in two-sided lid-driven square
cavity with a pair of triangular heating cylinders, J. Eng., 2016
(2016) 1–8.
- Z. Boulahia, A. Wakif, A.J. Chamkha, C.H. Amanulla, R. Sehaqui,
Effects of wavy wall amplitudes on mixed convection heat
transfer in a ventilated wavy cavity filled by copper-water
nanofluid containing a central circular cold body, J. Nanofluids,
8 (2019) 1170–1178.
- Z. Boulahia, A. Wakif, A.J. Chamkha, R. Sehaqui, Numerical
study of forced, mixed and natural convection of nanofluids
inside a ventilated cavity containing different shapes of cold
block, J. Nanofluids, 8 (2019) 1–9.
- Z. Boulahia, A. Wakif, R. Sehaqui, Numerical modeling of
natural convection heat transfer in a wavy wall enclosure filled
by a Cu-water nanofluid with a square cooler, J. Nanofluids,
6 (2017) 324–333.
- Z. Boulahia, A. Wakif, R. Sehaqui, Finite volume analysis of
free convection heat transfer in a square enclosure filled by
a cu-water nanofluid containing different shapes of heating
cylinder, J. Nanofluids, 6 (2017) 761–768.
- Z. Boulahia, C. Boulahia, R. Sehaqui, Two-phase computation
of free convection and entropy generation inside an enclosure
filled by a hybrid Al2O3-TiO2-Cu water nanofluid having a
corrugated heat source using the generalized Buongiorno’s
mathematical model: employ, Mater. Today Proc., 30 (2020)
1056–1067.
- Z. Boulahia, A. Wakif, R. Sehaqui, Heat transfer and Cu-water
nanofluid flow in a ventilated cavity having central cooling
cylinder and heated from the below considering three
different outlet port locations, Front. Heat Mass Transfer,
11 (2018) 1–10.
- M. Sheikholeslami, T. Hayat, A. Alsaedi, S. Abelman, Numerical
analysis of EHD nanofluid force convective heat transfer
considering electric field dependent viscosity, Int. J. Heat Mass
Transfer, 108 (2017) 2558–2565.
- F. Garoosi, S. Garoosi, K. Hooman, Numerical simulation of
natural convection and mixed convection of the nanofluid in
a square cavity using Buongiorno model, Powder Technol.,
268 (2014) 279–292.
- S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor
and Francis, London, 1980.
- D.B. Spalding, A novel finite difference formulation for
differential expressions involving both first and second
derivatives, Int. J. Numer. Methods Eng., 4 (1972) 551–559.
- G.A. Sheikhzadeh, M. Dastmalchi, H. Khorasanizadeh,
Effects of nanoparticles transport mechanisms
on Al2O3-water
nanofluid natural convection in a square enclosure, Int. J.
Therm. Sci., 68 (2013) 79–93.
- K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat
transfer enhancement in a two-dimensional enclosure utilizing
nanofluids, Int. J. Heat Mass Transfer, 46 (2003) 3639–3653.