References

  1. D. Badis, Z. Benmaamar, O. Benkortbi, H. Boutoumi, H. Hamitouche, A. Aggoun, Removal of methylene blue by adsorption onto retama raetam plant: kinetics and equilibrium study, Chem. J. MOLDOVA, 11 (2016) 74–83.
  2. R. Farma, F. Wahyuni, Awitdrus, Physical properties analysis of activated carbon from oil palm empty fruit bunch fiber on methylene blue adsorption, J. Technomaterial Phys., 1 (2019) 67–73.
  3. R. Abu-El-Halawa, S.A. Zabin, H.H. Abu-Sittah, Investigation of methylene blue dye adsorption from polluted water using oleander plant (Al defla) tissues as sorbent, Am. J. Environ. Sci., 12 (2016) 213–224.
  4. C.M. Chan, S.X. Chin, S.W. Chook, C.H. Chia, S. Zakaria, Combined mechanical-chemical pre-treatment of oil palm empty fruit bunch (EFB) fibers for adsorption of methylene blue (MB) in aqueous solution, Malays. J. Anal. Sci., 22 (2018) 1007–1013.
  5. Y. Kuang, X. Zhang, S. Zhou, Adsorption of methylene blue in water onto activated carbon by surfactant modification, Water (Switzerland), 12 (2020) 1–19.
  6. A. Azari, M. Yeganeh, M. Gholami, M. Salari, The superior adsorption capacity of 2,4-Dinitrophenol under ultrasoundassisted magnetic adsorption system: modeling and process optimization by central composite design, J. Hazard. Mater., 418 (2021) 126348, doi: 10.1016/j.jhazmat.2021.126348.
  7. Y. Rashtbari, S. Hazrati, A. Azari, S. Afshin, M. Fazlzadeh, M. Vosoughi, A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: cephalexin adsorption experiments, mechanisms, isotherms and kinetics, Adv. Powder Technol., 31 (2020) 1612–1623.
  8. A. Azari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, Integrated fuzzy AHP-TOPSIS for selecting the best color removal process using carbon-based adsorbent materials: multi-criteria decision making vs. systematic review approaches and modeling of textile wastewater treatment in real conditions, Int. J. Environ. Anal. Chem., 102 (2020) 7329–7344.
  9. D.L. Postai, C.A. Demarchi, F. Zanatta, D.C.C. Melo, C.A. Rodrigues, Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent, Alexandria Eng. J., 55 (2016) 1713–1723.
  10. D. Lan, H. Zhu, J. Zhang, S. Li, Q. Chen, C. Wang, T. Wu, M. Xu, Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: a review on species, mechanisms and perspectives, Chemosphere, 293 (2022) 133464, doi: 10.1016/j.chemosphere.2021.133464.
  11. G. Ravenni, G. Cafaggi, Z. Sárossy, K.T. Rohde Nielsen, J. Ahrenfeldt, U.B. Henriksen, Waste chars from wood gasification and wastewater sludge pyrolysis compared to commercial activated carbon for the removal of cationic and anionic dyes from aqueous solution, Bioresour. Technol. Rep., 10 (2020) 100421, doi: 10.1016/j.biteb.2020.100421.
  12. A.A. Ahmad, A.T.M. Din, N.K.E. Yahaya, A. Khasri, M.A. Ahmad, Adsorption of basic green 4 onto gasified Glyricidia sepium woodchip based activated carbon: optimization, characterization, batch and column study, Arabian J. Chem., 13 (2020) 6887–6903.
  13. H. Jung, D.D. Sewu, G. Ohemeng-Boahen, D.S. Lee, S.H. Woo, Characterization and adsorption performance evaluation of waste char by-product from industrial gasification of solid refuse fuel from municipal solid waste, Waste Manage., 91 (2019) 33–41.
  14. R.M. Raj, M. Asaithambi, Microwave assisted chemical activation of papaya leaf stem activated carbon for the removal of dyes from aqueous solution, J. Environ. Nanotechnol., 3 (2014) 91–95.
  15. V. Benedetti, F. Patuzzi, M. Baratieri, Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications, Appl. Energy, 227 (2018) 92–99.
  16. A.A. Ahmad, N.A. Zawawi, F.H. Kasim, A. Inayat, A. Khasri, Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation, Renewable Sustainable Energy Rev., 53 (2016) 1333–1347.
  17. G. Itskos, N. Margaritis, A. Koutsianos, P. Grammelis, Characterization of solid residues from high temperature gasification of olive kernel, Waste Biomass Valorization, 5 (2014) 893–901.
  18. X. Tang, N. Ripepi, High pressure supercritical carbon dioxide adsorption in coal: adsorption model and thermodynamic characteristics, J. CO2 Util., 18 (2017) 189–197.
  19. T. Xu, Y. Wu, S. Bhattacharya, Gasification kinetic modelling of victorian brown coal chars and validity for entrained flow gasification in CO2, Int. J. Min. Sci. Technol., 31 (2021) 473–481.
  20. R. Wei, L. Ren, F. Geng, Gasification reactivity and characteristics of coal chars and petcokes, J. Energy Inst., 96 (2021) 25–30.
  21. M. Sajid, A. Raheem, N. Ullah, M. Asim, M.S. Ur Rehman, N. Ali, Gasification of municipal solid waste: progress, challenges, and prospects, Renewable Sustainable Energy Rev., 168 (2022) 112815, doi: 10.1016/j.rser.2022.112815.
  22. A.R. Saleh, B. Sudarmanta, H. Fansuri, O. Muraza, Syngas production from municipal solid waste with a reduced tar yield by three-stages of air inlet to a downdraft gasifier, Fuel, 263 (2020) 116509, doi: 10.1016/j.fuel.2019.116509.
  23. P. Mondal, From municipal solid waste (MSW) to hydrogen: performance optimization of a fixed bed gasifier using Box–Benkhen method, Int. J. Hydrogen Energy, 47 (2022) 20064–20075.
  24. S. Banerjee, G.C. Sharma, R.K. Gautam, M.C. Chattopadhyaya, S.N. Upadhyay, Y.C. Sharma, Removal of malachite green, a hazardous dye from aqueous solutions using avena sativa (oat) hull as a potential adsorbent, J. Mol. Liq., 213 (2016) 162–172.
  25. T. Maneerung, J. Liew, Y. Dai, S. Kawi, C. Chong, C.H. Wang, Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies, Bioresour. Technol., 200 (2016) 350–359.
  26. W.M.S. Wan Ismail, R.A. Rasid, Empty fruit bunch (EFB) gasification in an entrained flow gasification system, Chem. Eng. Res. Bull., 19 (2017) 43–49.
  27. G. Su, N.W. Mohd Zulkifli, H.C. Ong, S. Ibrahim, Q. Bu, R. Zhu, Pyrolysis of oil palm wastes for bioenergy in Malaysia: a review, Renewable Sustainable Energy Rev., 164 (2022) 112554, doi: 10.1016/j.rser.2022.112554.
  28. A.A. Ahmad, A.T.M. Din, N.K.E.M. Yahaya, J. Karim, M.A. Ahmad, Atenolol sequestration using activated carbon derived from gasified Glyricidia sepium, Arabian J. Chem., 13 (2020) 7544–7557.
  29. N. Intarachandra, S. Siriworakon, T. Sangmanee, Preparation of oil palm empty fruit bunch based activated carbon for adsorption of dye from aqueous solution, MATEC Web Conf., 268 (2019) 06008, doi: 10.1051/matecconf/201926806008.
  30. A. Khasri, M.R.M. Jamir, A.A. Ahmad, M.A. Ahmad, Adsorption of remazol brilliant violet 5r dye from aqueous solution onto melunak and rubberwood sawdust based activated carbon: interaction mechanism, isotherm, kinetic and thermodynamic properties, Desal. Water Treat., 216 (2021) 401–411.
  31. M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf., 138 (2017) 279–285.
  32. M.F.M. Yusop, M.A. Ahmad, N.A. Rosli, M.E.A. Manaf, Adsorption of cationic methylene blue dye using microwaveassisted activated carbon derived from acacia wood: optimization and batch studies, Arabian J. Chem., 14 (2021) 103122, doi: 10.1016/j.arabjc.2021.103122.
  33. C. Ooi, T. Lee, S. Pung, F. Yeoh, Activated carbon fiber derived from single step carbonization-activation process, ASEAN Eng. J., 4 (2015) 40–50.
  34. A.A. Adeyi, S.N.A.M. Jamil, L.C. Abdullah, T.S.Y. Choong, Adsorption of malachite green dye from liquid phase using hydrophilic thiourea-modified poly(acrylonitrile-co-acrylic acid): kinetic and isotherm studies, J. Chem., 2019 (2019) 4321475 (1–14), doi: 10.1155/2019/4321475.
  35. N.B. Osman, N. Shamsuddin, Y. Uemura, Activated carbon of oil palm empty fruit bunch (EFB); core and shaggy, Procedia Eng., 148 (2016) 758–764.
  36. A.A. Ahmad, M.A. Ahmad, N.K.E.M. Yahaya, J. Karim, Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root, Arabian J. Chem., 14 (2021) 103104, doi: 10.1016/j.arabjc.2021.103104.
  37. A. Khasri, O.S. Bello, M.A. Ahmad, Mesoporous activated carbon from pentace species sawdust via microwave-induced KOH activation: optimization and methylene blue adsorption, Res. Chem. Intermed., 44 (2018) 1–21.
  38. R. Wirasnita, T. Hadibarata, A.R.M. Yusoff, Z. Mat Lazim, Preparation and characterization of activated carbon from oil palm empty fruit bunch wastes using zinc chloride, J. Teknol., 74 (2015) 77–81.
  39. Y. Sudaryanto, S.B. Hartono, W. Irawaty, H. Hindarso, S. Ismadji, High surface area activated carbon prepared from cassava peel by chemical activation, Bioresour. Technol., 97 (2006) 734–739.
  40. F.A. Daud, N. Ismail, R.M. Ghazi, Response surface methodology optimization of methylene blue removal by activated carbon derived from foxtail palm tree empty fruit bunch, J. Trop. Resour. Sustain. Sci., 4 (2016) 25–30.
  41. P.K. Singh, S. Banerjee, A.L. Srivastava, Y.C. Sharma, Kinetic and equilibrium modeling for removal of nitrate from aqueous solutions and drinking water by a potential adsorbent, hydrous bismuth oxide, RSC Adv., 5 (2015) 35365–35376.
  42. N. Ahmad, N. Ibrahim, P.Y. Fu, R. Ahmad, Influence of carbonisation temperature on the surface pore characteristics of acid-treated oil palm empty fruit bunch activated carbon, J. Teknol., 82 (2020) 127–133.
  43. A. Khasri, A.A. Ahmad, M.A. Ahmad, Preparation of activated carbon by microwave-induced KOH activation and its application in dye removal, AIP Conf. Proc., 2124 (2019) 020054, doi: 10.1063/1.5117114.
  44. K.Y. Foo, B.H. Hameed, Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for methylene blue, Fuel Process. Technol., 99 (2012) 103–109.
  45. M.M. Almoneef, J. Rouabeh, M. Mbarek, Theoretical assessment of the adsorption mechanism of methylene blue and malachite green on metalloporphyrin, Synth. Met., 290 (2022) 117158, doi: 10.1016/j.synthmet.2022.117158.
  46. C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, A. Modarressi, M. Rogalski, Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon, J. Taiwan Inst. Chem. Eng., 53 (2015) 112–121.
  47. S. Zhou, Z. Du, X. Li, Y. Zhang, Y. He, Y. Zhang, Degradation of methylene blue by natural manganese oxides: kinetics and transformation products, R. Soc. Open Sci., 6 (2019) 190351, doi: 10.1098/rsos.190351.
  48. L. Yu, Y. Luo, Journal of environmental chemical engineering the adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon, Biochem. Pharmacol., 2 (2014) 220–229.
  49. M.S. Sajab, C.H. Chia, S. Zakaria, P.S. Khiew, Cationic and anionic modifications of oil palm empty fruit bunch fibers for the removal of dyes from aqueous solutions, Bioresour. Technol., 128 (2013) 571–577.
  50. S. Soleimani, A. Heydari, M. Fattahi, A. Motamedisade, Calcium alginate hydrogels reinforced with cellulose nanocrystals for methylene blue adsorption: synthesis, characterization, and modelling, Ind. Crops Prod., 192 (2023) 115999, doi: 10.1016/j.indcrop.2022.115999.
  51. L. Mouni, L. Belkhiri, J.C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani, H. Remini, Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies, Appl. Clay Sci., 153 (2018) 38–45.
  52. A.H. Jawad, S.E.M. Saber, A.S. Abdulhameed, A. Reghioua, Z.A. ALOthman, L.D. Wilson, Mesoporous activated carbon from mangosteen (Garcinia mangostana) peels by H3PO4 assisted microwave: optimization, characterization, and adsorption mechanism for methylene blue dye removal, Diamond Relat. Mater., 129 (2022) 109389, doi: 10.1016/j.diamond.2022.109389.
  53. Y. Wang, C. Srinivasakannan, H. Wang, G. Xue, L. Wang, X. Wang, X. Duan, Preparation of novel biochar containing graphene from waste bamboo with high methylene blue adsorption capacity, Diamond Relat. Mater., 125 (2022) 109034, doi: 10.1016/j.diamond.2022.109034.
  54. L.F.B. de Araújo, S.E. Mazzetto, D. Lomonaco, F. Avelino, Unraveling the adsorption mechanism of methylene blue onto selective pH precipitated kraft lignins: kinetic, equilibrium and thermodynamic aspects, Int. J. Biol. Macromol., 220 (2022) 1267–1276.
  55. O. Amrhar, H. Nassali, M. Elyoubi, Application of nonlinear regression analysis to select the optimum absorption isotherm for methylene blue adsorption onto natural illitic clay, Bull. La Société R. Des Sci. Liège, 84 (2015) 116–130.
  56. S. Gholitabar, H. Tahermansouri, Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound, Carbon Lett., 22 (2017) 14–24.
  57. F. Ullah, G. Ji, M. Irfan, Y. Gao, F. Shafiq, Y. Sun, Q.U. Ain, A. Li, Adsorption performance and mechanism of cationic and anionic dyes by KOH activated biochar derived from medical waste pyrolysis, Environ. Pollut., 314 (2022) 120271, doi: 10.1016/j.envpol.2022.120271.
  58. K. Ghosh, N. Bar, A. Baran Biswas, S.K. Das, Removal of methylene blue by H3PO4 treated eucalyptus leaves: study of fixed bed column and GA-ANN modeling, Sustainable Chem. Pharm., 29 (2022) 100774, doi: 10.1016/j.scp.2022.100774.
  59. E. Salehi, M. Askari, M. Velashjerdi, B. Arab, Phosphoric acid-treated spent tea residue biochar for wastewater decoloring: batch adsorption study and process intensification using multivariate data-based optimization, Chem. Eng. Process. Process Intensif., 158 (2020) 108170, doi: 10.1016/j.cep.2020.108170.
  60. C.C. de Souza, L.Z.M. de Souza, M. Yılmaz, M.A. de Oliveira, A.C. da Silva Bezerra, E.F. da Silva, M.R. Dumont, A.R.T. Machado, Activated carbon of Coriandrum sativum for adsorption of methylene blue: equilibrium and kinetic modeling, Cleaner Mater., 3 (2022) 100052, doi: 10.1016/j.clema.2022.100052.
  61. S. Rangabhashiyam, P. Balasubramanian, Adsorption behaviors of hazardous methylene blue and hexavalent chromium on novel materials derived from Pterospermum acerifolium shells, J. Mol. Liq., 254 (2018) 433–445.
  62. S. Basu, G. Ghosh, S. Saha, Adsorption characteristics of phosphoric acid induced activation of bio-carbon: equilibrium, kinetics, thermodynamics and batch adsorber design, Process Saf. Environ. Prot., 117 (2018) 125–142.
  63. R.A. Canales-Flores, F. Prieto-García, Taguchi optimization for production of activated carbon from phosphoric acid impregnated agricultural waste by microwave heating for the removal of methylene blue, Diamond Relat. Mater., 109 (2020) 108027, doi: 10.1016/j.diamond.2020.108027.
  64. Y. Tang, Y. Zhao, T. Lin, Y. Li, R. Zhou, Y. Peng, Adsorption performance and mechanism of methylene blue by H3PO4-modified corn stalks, J. Environ. Chem. Eng., 7 (2019) 103398, doi: 10.1016/j.jece.2019.103398.