References
- S. Wang, N. Zhou, Removal of carbamazepine from aqueous
solution using sono-activated persulfate process, Ultrason.
Sonochem., 29 (2016) 156–162.
- C. Schumacher, More Challenges in the Greenpeace Detox
Campaign, 2012. Available at http://blog.stepchangeinnovations.
com/2012/11/more-challenges-in-the-greenpeacedetox-campaign/ (Accessed 26 January 2016).
- Y. Zhang, Y. Zhuang, J. Geng, H. Ren, K. Xu, L. Ding, Reduction
of antibiotic resistance genes in municipal wastewater effluent
by advanced oxidation processes, Sci. Total Environ., 550 (2016)
184–191.
- I. Hussain, Y. Zhang, S. Huang, Degradation of aniline with
zero-valent iron as an activator of persulfate in aqueous
solution, RSC Adv., 4 (2014) 3502–3511.
- F. Ghanbari, M. Moradi, F. Gohari, Degradation of
2,4,6-trichlorophenol in aqueous solutions using
peroxymonosulfate/activated carbon/UV process via sulfate
and hydroxyl radicals, J. Water Process Eng., 9 (2016) 22–28.
- L.W. Matzek, K.E. Carter, Activated persulfate for organic
chemical degradation: a review, Chemosphere, 151 (2016)
178–188.
- T. Olmez-Hanci, I. Arslan-Alaton, Comparison of sulfate
and hydroxyl radical based advanced oxidation of phenol,
Chem. Eng. J., 224 (2013) 10–16.
- N.S. Shah, X. He, J.A. Khan, H.M. Khan, D.L. Boccelli,
D.D. Dionysiou, Comparative studies of various iron-mediated
oxidative systems for the photochemical degradation of
endosulfan in aqueous solution, J. Photochem. Photobiol.,
306 (2015) 80–86.
- T. Liu, B. Yao, Z. Luo, W. Li, C. Li, Z. Ye, X. Gong, J. Yang,
Y. Zhou, Applications and influencing factors of the biocharpersulfate
based advanced oxidation processes for the
remediation of groundwater and soil contaminated with
organic compounds, Sci. Total Environ., 836 (2022) 155421,
doi: 10.1016/j.scitotenv.2022.155421.
- H. Ferkous, S. Merouani, O. Hamdaoui, C. Petrier, Persulfateenhanced
sonochemical degradation of naphthol blueblack
in water: evidence of sulfate radical formation,
Ultrason. Sonochem., 34 (2017) 580–587.
- E. Kattel, B. Kaur, M. Trapido, N. Dulova, Persulfate-based
photodegradation of a beta-lactam antibiotic amoxicillin in
various water matrices, Environ. Technol., 41 (2020) 202–210.
- E. Kattel, M. Trapido, N. Dulova, Oxidative degradation of
emerging micropollutant acesulfame in aqueous matrices
by UVA-induced H2O2/Fe2+ and S2O82–/Fe2+ processes,
Chemosphere, 171 (2017) 528–536.
- P. Gayathri, R.P.J. Dorathi, K. Palanivelu, Sonochemical
degradation of textile dyes in aqueous solution using
sulphate radicals activated by immobilized cobalt ions,
Ultrason. Sonochem., 17 (2010) 566–571.
- F. Wang, C. Wu, Q. Li, Treatment of refractory organics
in strongly alkaline dinitrodiazophenol wastewater with
microwave irradiation-activated persulfate, Chemosphere,
254 (2020) 126773, doi: 10.1016/j.chemosphere.2020.126773.
- L. He, H. Chen, L. Wu, Z. Zhang, Y. Ma, J. Zhu, J. Liu, X. Yan,
H. Li, L. Yang, Synergistic heat/UV activated persulfate for
the treatment of nanofiltration concentrated leachate,
Ecotoxicol. Environ. Saf., 208 (2021) 111522, doi: 10.1016/j.ecoenv.2020.111522.
- O. Pourehie, J. Saien, Treatment of real petroleum refinery
wastewater with alternative ferrous-assisted UV/persulfate
homogeneous processes, Desal. Water Treat., 142 (2019)
140–147.
- O.A. Andrew, S. Pirgalıoğlu, Ş. Doğan, Heat activated persulfate
oxidation of Reactive Black 5, Desal. Water Treat., 177 (2020)
393–399.
- Y. Guo, K. Xuan, C. Pu, Y. Li, Y. Huang, Y. Guo, M. Jia, J. Li,
H. Ruan, Effect of activator/precursor mass ratio on sulfurdoped
porous carbon for catalytic oxidation of aqueous
organics with persulfate, Chemosphere, 303 (2022) 135–192.
- R. Xiao, Z. Luo, Z. Wei, S. Luo, R. Spinney, W. Yang, D. Dionysiou,
Activation of peroxymonosulfate/persulfate by nanomaterials
for sulfate radical-based advanced oxidation technologies,
Curr. Opin. Chem. Eng., 19 (2018) 51–18.
- K.S. Suslick, Sonochemistry, Science, 247 (1990) 1439–1445.
- A. Ziylan, S. Dogan, S. Agopcan, R. Kidak, V. Aviyente,
N.H. İnce, Sonochemical degradation of diclofenac: by-product
assessment, reaction mechanisms, and environmental
considerations, Environ. Sci. Pollut. Res., 21 (2014) 5929–5939.
- Z.H. Diao, F.X. Dong, L. Yan, Z.L. Chen, W. Qian, L.J. Kong,
Z.W. Zhang, T. Zhang, X.Q. Tao, J.J. Du, D. Jiang, W. Chu,
Synergistic oxidation of Bisphenol A in a heterogeneous
ultrasound-enhanced sludge biochar catalyst/persulfate
process: reactivity and mechanism, J. Hazard. Mater., 384 (2020)
121385, doi: 10.1016/j.jhazmat.2019.121385.
- Y.T. Li, D. Li, L.J. Lai, Y.H. Li, Remediation of petroleum
hydrocarbon contaminated soil by using activated persulfate
with ultrasound and ultrasound/Fe, Chemosphere, 238 (2020)
124657, doi: 10.1016/j.chemosphere.2019.124657.
- Q. Wang, Y. Cao, H. Zeng, Y. Liang, J. Ma, X. Lu, Ultrasoundenhanced
zero-valent copper activation of persulfate for the
degradation of bisphenol AF, Chem. Eng. J., 378 (2019) 122143,
doi: 10.1016/j.cej.2019.122143.
- S. Chakma, S. Praneeth, V.S. Moholkar, Mechanistic
investigations in sono-hybrid (ultrasound/Fe2+/UVC) techniques
of persulfate activation for degradation of Azorubine,
Ultrason. Sonochem., 38 (2017) 652–663.
- X. Wu, G. Xu, J.J. Zhu, Sonochemical synthesis of Fe3O4/carbon
nanotubes using low-frequency ultrasonic devices and their
performance for heterogeneous sono-persulfate process on
inactivation of Microcystis aeruginosa, Ultrason. Sonochem.,
58 (2019) 104634, doi: 10.1016/j.ultsonch.2019.104634.
- Y. Liu, Z. Liu, Y. Wang, Y. Yin, J. Pan, J. Zhang, Q. Wang,
Simultaneous absorption of SO2 and NO from flue gas using
ultrasound/Fe2+/heat coactivated persulfate system, J. Hazard.
Mater., 342 (2018) 326–334.
- N. Yousefi, S. Pourfadakari, S. Esmaeili, A.A. Babaei,
Mineralization of high saline petrochemical wastewater using
sonoelectro-activated persulfate: degradation mechanisms and
reaction kinetics, Microchem. J., 147 (2019) 1075–1082.
- Y.q. Gao, N.y. Gao, W. Wang, S.f. Kang, J.h. Xu, H.m. Xiang,
D.q. Yin, Ultrasound-assisted heterogeneous activation of
persulfate by nano zero-valent iron (nZVI) for the propranolol
degradation in water, Ultrason. Sonochem., 49 (2018) 33–40.
- S.G. Babu, P. Aparna, G. Satishkumar, M. Ashokkumar,
B. Neppolian, Ultrasound-assisted mineralization of organic
contaminants using a recyclable LaFeO3 and Fe3+/persulfate
Fenton-like system, Ultrason. Sonochem., 34 (2017) 924–930.
- F. Sepyani, R. Darvishi Cheshmeh Soltani, S. Jorfi, H. Godini,
M. Safari, Implementation of continuously
electro-generated
Fe3O4 nanoparticles for activation of persulfate to decompose
amoxicillin antibiotic in aquatic media: UV254 and ultrasound
intensification, J. Environ. Manage., 224 (2018) 315–326.
- T. Zhang, Y. Yang, J. Gao, X. Li, H. Yu, N. Wang, P. Du,
R. Yu, H. Li, X. Fan, Z. Zhou, Synergistic degradation of
chloramphenicol by ultrasound-enhanced nanoscale zerovalent
iron/persulfate treatment, Sep. Purif. Technol., 240 (2020)
116575, doi: 10.1016/j.seppur.2020.116575.
- L. Peng, L. Wang, X. Hu, P. Wu, X. Wang, C. Huang, X. Wang,
D. Deng, Ultrasound-assisted, thermally activated persulfate
oxidation of coal tar DNAPLs, J. Hazard. Mater., 318 (2016)
497–506.
- J. Guo, L. Zhu, N. Sun, Y. Lan, Degradation of nitrobenzene
by sodium persulfate activated with zero-valent zinc in the
presence of low-frequency ultrasound, J. Taiwan Inst. Chem.
Eng., 78 (2017) 137–143.
- D. Deng, X. Lin, J. Ou, Z. Wang, S. Li, M. Deng, Y. Shu, Efficient
chemical oxidation of high levels of soil-sorbed phenanthrene
by ultrasound-induced, thermally activated persulfate,
Chem. Eng. J., 265 (2015) 176–183.
- S. Vajnhandl, A.M. Le Marechal, Case study of the sonochemical
decoloration of textile azo dye Reactive Black 5, J. Hazard.
Mater., 141 (2007) 329–335.
- M.H. Entezari, Z.S. Al-Hoseini, N. Ashraf, Fast and efficient
removal of Reactive Black 5 from aqueous solution by a
combined method of ultrasound and sorption process,
Ultrason. Sonochem., 15 (2008) 433–437.
- C. Liang, C.F. Huang, N. Mohanty, R.M. Kurakalva, A rapid
spectrophotometric determination of persulfate anion in ISCO,
Chemosphere, 73 (2008) 1540–1543.
- J. Hudzicki, Kirby-Bauer Disk Diffusion Susceptibility Test
Protocol, American Society of Microbiology, 2009.
- R.F. Contamine, A.M. Wilhelm, J. Berlan, H. Delmas, Power
measurement in sonochemistry, Ultrason. Sonochem., 2 (1995)
43–47.
- O.S. Arvaniti, Z. Frontistis, M.C. Nika, R. Aalizadeh,
N.S. Thomaidis, D. Mantzavinos, Sonochemical degradation
of trimethoprim in water matrices: effect of operating
conditions, identification of transformation products and
toxicity assessment, Ultrason. Sonochem., 67 (2020) 105139,
doi: 10.1016/j.ultsonch.2020.105139.
- O.S. Arvaniti, A.A. Ioannidi, D. Mantzavinos, Z. Frontistis,
Heat-activated persulfate for the degradation of micropollutants
in water: a comprehensive review and future perspectives,
J. Environ. Manage., 318 (2022) 155568, doi: 10.1016/j.jenvman.2022.115568.
- R. Kishor, D. Purchase, G.D. Saratale, L.F.R. Ferreira,
M. Bilal, H.M.N. Iqbal, R.N. Bharagava,
Environment-friendly
degradation and detoxification of Congo red dye and textile
industry wastewater by a newly isolated Bacillus cohnni (RKS9),
Environ. Technol. Innov., 22 (2021) 101425,
doi: 10.1016/j.eti.2021.101425.
- J. Wu, H. Zhang, J. Qiu, Degradation of Acid Orange 7 in
aqueous solution by a novel electro/Fe2+/peroxydisulfate
process, J. Hazard. Mater., 215–216 (2012) 138–145.
- M.E. Bouraie, W.S.E. Din, Biodegradation of Reactive Black 5
by Aeromonas hydrophila strain isolated from dye-contaminated
textile wastewater, Sustain. Environ. Res., 26 (2016) 209–216.
- R. Al-Tohamy, J. Sun, M.F. Fareed, E.-F. Kenawy, S.S. Ali,
Ecofriendly biodegradation of Reactive Black 5 by newly
isolated Sterigmatomyces halophilus SSA1575, valued for textile
azo dye wastewater processing and detoxification, Sci. Rep.,
10 (2020) 12370, doi: 10.1038/s41598-020-69304-4.
- H. Nassehinia, H. Rahmani, K. Rahmani, A. Rahmani, Solar
photocatalytic degradation of Reactive Black 5: by-products,
bio-toxicity, and kinetic study, Desal. Water Treat., 206 (2020)
385–395.
- O.A. Andrew, S. Pirgalıoğlu, Ş. Doğan, Heat activated persulfate
oxidation of Reactive Black 5, Desal. Water Treat., 177 (2020)
393–399.