References
- SDG 6 Synthesis Report 2018 on Water and Sanitation, n.d.
Available at: https://www.unwater.org/publications/sdg-6-synthesis-report-2018-on-water-and-sanitation/ (Accessed
September 2, 2021).
- M. Sarai Atab, A.J. Smallbone, A.P. Roskilly, An operational
and economic study of a reverse osmosis desalination system
for potable water and land irrigation, Desalination, 397 (2016)
174–184.
- K. Minyaoui, H. Hchaichi, P. Maxime, A. Hannachi, Integrated
approach for brackish water desalination and distribution:
Which desalination technology to choose?, Desal. Water Treat.,
73 (2017) 121–126.
- A. Alkaisi, R. Mossad, A. Sharifian-Barforoush, A review of the
water desalination systems integrated with renewable energy,
Energy Procedia, 110 (2017) 268–274.
- S.F. Anis, R. Hashaikeh, N. Hilal, Reverse osmosis pretreatment
technologies and future trends: a comprehensive review,
Desalination, 452 (2019) 159–195.
- J. Bohdziewicz, M. Bodzek, E. Wąsik, The application of reverse
osmosis and nanofiltration to the removal of nitrates from
groundwater, Desalination, 121 (1999) 139–147.
- A. Lhassani, M. Rumeau, D. Benjelloun, M. Pontie, Selective
demineralization of water by nanofiltration application to
the defluorination of brackish water, Water Res., 35 (2001)
3260–3264.
- A. M’nif, S. Bouguecha, B. Hamrouni, M. Dhahbi, Coupling
of membrane processes for brackish water desalination,
Desalination, 203 (2007) 331–336.
- N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and
evaluation of the economics of water desalination: current
and future challenges for better water supply sustainability,
Desalination, 309 (2013) 197–207.
- H. Hchaichi, S. Siwar, H. Elfil, A. Hannachi, Scaling predictions
in seawater reverse osmosis desalination, Membr. Water Treat.,
5 (2014) 221–233.
- H. Elfil, A. Hamed, A. Hannachi, Technical evaluation of a
small-scale reverse osmosis desalination unit for domestic
water, Desalination, 203 (2007) 319–326.
- A. Antony, J.H. Low, S. Gray, A.E. Childress, P. Le-Clech,
G. Leslie, Scale formation and control in high pressure
membrane water treatment systems: a review, J. Membr. Sci.,
383 (2011) 1–16.
- S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis
membrane fouling and control strategies, Sci. Total Environ.,
595 (2017) 567–583.
- O. Levenspiel, Chemical Reaction Engineering, John Wiley &
Sons, Hoboken, New Jersey, USA, 1998.
- S. Rjeb, A. Hannachi, R. Abdelhamid, Hydrodynamic
investigation in an annular reactor with mixing time and
residence time distribution: flow rates estimation with the
gauss-newton gradient technique, Chem. Prod. Process Model.,
6 (2011), doi: 10.2202/1934-2659.1539.
- E. Roth, M. Kessler, B. Fabre, A. Accary, Sodium chloride
stimulus-response experiments in spiral wound reverse osmosis
membranes: a new method to detect fouling, Desalination,
121 (1999) 183–193.
- P. Dydo, M. Turek, J. Ciba, Laboratory RO and NF processes
fouling investigation by residence time distribution curves
examination, Desalination, 164 (2004) 33–40.
- D. Hasson, A. Drak, C. Komlos, Q. Yang, R. Semiat, Detection
of fouling on RO modules by residence time distribution
analyses, Desalination, 204 (2007) 132–144.
- Q. Yang, A. Drak, D. Hasson, R. Semiat, RO module RTD
analyses based on directly processing conductivity signals,
J. Membr. Sci., 306 (2007) 355–364.
- A. Miskiewicz, G. Zakrzewska-Trznadel, A. Dobrowolski,
A. Jaworska-Sobczak, Using tracer methods and experimental
design approach for examination of hydrodynamic conditions
in membrane separation modules, Appl. Radiat. Isot.,
70 (2012) 837–847.
- T.Y. Qiu, P.A. Davies, Longitudinal dispersion in spiral wound
RO modules and its effect on the performance of batch mode
RO operations, Desalination, 288 (2012) 1–7.
- M. Li, Residence time distribution in RO channel, Desalination,
506 (2021) 115000, doi: 10.1016/j.desal.2021.115000.
- M. Sheoran, A. Chandra, H. Bhunia, P.K. Bajpai, H.J. Pant,
Residence time distribution studies using radiotracers in
chemical industry—a review, Chem. Eng. Commun., 205 (2018)
739–758.
- A. Bérard, B. Blais, G.S. Patience, Experimental methods in
chemical engineering: residence time distribution—RTD, Can.
J. Chem. Eng., 98 (2020) 848–867.
- A.E. Rodrigues, Residence time distribution (RTD) revisited,
Chem. Eng. Sci., 230 (2021) 116188, doi: 10.1016/j.ces.2020.116188.
- N. Meftah, A. Ezzeddine, A. Bedoui, A. Hannachi, Hybrid
neutralization and membrane process for fluoride removal
from an industrial effluent, Membr. Water Treat., 11 (2020)
303–312.
- N. Meftah, A. Ezzeddine, A. Bedoui, A. Hannachi,
Nanofiltration polishing membrane process for fluoride
removal, Desal. Water Treat., 198 (2020) 90–97.
- H.S. Fogler, Elements of chemical reaction engineering,
Chem. Eng. Sci., 42 (n.d.) 2493.
- M. Dülle, H. Özcoban, C.S. Leopold, The effect of different feed
frame components on the powder behavior and the residence
time distribution with regard to the continuous manufacturing
of tablets, Int. J. Pharm., 555 (2019) 220–227.
- D. Chicco, M.J. Warrens, G. Jurman, The coefficient of
determination R-squared is more informative than SMAPE,
MAE, MAPE, MSE and RMSE in regression analysis evaluation,
PeerJ Comput. Sci., 7 (2021) e623, doi: 10.7717/peerj-cs.623.
- D.A. Sievers, J.J. Stickel, Modeling residence-time distribution
in horizontal screw hydrolysis reactors, Chem. Eng. Sci.,
175 (2018) 396–404.
- L. Hua, J. Wang, Residence time distribution of particles in
circulating fluidized bed risers, Chem. Eng. Sci., 186 (2018)
168–190.
- M. Sebastian Escotet-Espinoza, S. Moghtadernejad, S. Oka,
Y. Wang, A. Roman-Ospino, E. Schäfer, P. Cappuyns, I. Van
Assche, M. Futran, M. Ierapetritou, F. Muzzio, Effect of
tracer material properties on the residence time distribution
(RTD) of continuous powder blending operations. Part I of II:
experimental evaluation, Powder Technol., 342 (2019) 744–763.
- B. Berkowitz, H. Scher, S.E. Silliman, Anomalous transport in
laboratory-scale, heterogeneous porous media, Water Resour.
Res., 36 (2000) 149–158.
- B. Bijeljic, S. Rubin, H. Scher, B. Berkowitz, Non-Fickian transport
in porous media with bimodal structural heterogeneity,
J. Contam. Hydrol., 120–121 (2011) 213–221.
- N.K. Karadimitriou, V. Joekar-Niasar, M. Babaei, C.A. Shore,
Critical role of the immobile zone in non-fickian two-phase
transport: a new paradigm, Environ. Sci. Technol., 50 (2016)
4384–4392.
- R.E. Hayes, J.P. Mmbaga, Introduction to Chemical Reactor
Analysis, CRC Press, Boca Raton, Florida, USA, 2012.
- T. Matsuo, K. Hanaki, S. Takizawa, H. Satoh, Advances in Water
and Wastewater Treatment Technology: Molecular Technology,
Nutrient Removal, Sludge Reduction, and Environmental
Health, Elsevier, Amsterdam, Netherlands, 2001.
- T. Ishigami, H. Matsuyama, Numerical modeling of
concentration polarization in spacer-filled channel with
permeation across reverse osmosis membrane, Ind. Eng. Chem.
Res., 54 (2015) 1665–1674.
- S.J. Altman, L.K. McGrath, H.D.T. Jones, A. Sanchez, R. Noek,
P. Clem, A. Cook, C.K. Ho, Systematic analysis of micromixers
to minimize biofouling on reverse osmosis membranes,
Water Res., 44 (2010) 3545–3554.
- W. Lin, Y. Zhang, D. Li, X. Wang, X. Huang, Roles and
performance enhancement of feed spacer in spiral wound
membrane modules for water treatment: a 20-year review
on research evolvement, Water Res., 198 (2021) 117146,
doi: 10.1016/j.watres.2021.117146.
- R. Rahmawati, M.R. Bilad, N.I.M. Nawi, Y. Wibisono,
H. Suhaimi, N. Shamsuddin, N. Arahman, Engineered spacers
for fouling mitigation in pressure driven membrane processes:
progress and projection, J. Environ. Chem. Eng., 9 (2021) 106285,
doi: 10.1016/j.jece.2021.106285.
- M.R. Cruz-Díaz, A. Laureano, F.A. Rodríguez, L.F. Arenas,
J.J.H. Pijpers, E.P. Rivero, Modelling of flow distribution within
spacer-filled channels fed by dividing manifolds as found
in stacks for membrane-based technologies, Chem. Eng. J.,
423 (2021) 130232, doi: 10.1016/j.cej.2021.130232.
- W. Lin, R. Shao, X. Wang, X. Huang, Impacts of non-uniform
filament feed spacers characteristics on the hydraulic and antifouling
performances in the spacer-filled membrane channels:
Experiment and numerical simulation, Water Res., 185 (2020)
116251, doi: 10.1016/j.watres.2020.116251.
- S. Kerdi, A. Qamar, J.S. Vrouwenvelder, N. Ghaffour, Fouling
resilient perforated feed spacers for membrane filtration,
Water Res., 140 (2018) 211–219.