References

  1. SDG 6 Synthesis Report 2018 on Water and Sanitation, n.d. Available at: https://www.unwater.org/publications/sdg-6-synthesis-report-2018-on-water-and-sanitation/ (Accessed September 2, 2021).
  2. M. Sarai Atab, A.J. Smallbone, A.P. Roskilly, An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation, Desalination, 397 (2016) 174–184.
  3. K. Minyaoui, H. Hchaichi, P. Maxime, A. Hannachi, Integrated approach for brackish water desalination and distribution: Which desalination technology to choose?, Desal. Water Treat., 73 (2017) 121–126.
  4. A. Alkaisi, R. Mossad, A. Sharifian-Barforoush, A review of the water desalination systems integrated with renewable energy, Energy Procedia, 110 (2017) 268–274.
  5. S.F. Anis, R. Hashaikeh, N. Hilal, Reverse osmosis pretreatment technologies and future trends: a comprehensive review, Desalination, 452 (2019) 159–195.
  6. J. Bohdziewicz, M. Bodzek, E. Wąsik, The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater, Desalination, 121 (1999) 139–147.
  7. A. Lhassani, M. Rumeau, D. Benjelloun, M. Pontie, Selective demineralization of water by nanofiltration application to the defluorination of brackish water, Water Res., 35 (2001) 3260–3264.
  8. A. M’nif, S. Bouguecha, B. Hamrouni, M. Dhahbi, Coupling of membrane processes for brackish water desalination, Desalination, 203 (2007) 331–336.
  9. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  10. H. Hchaichi, S. Siwar, H. Elfil, A. Hannachi, Scaling predictions in seawater reverse osmosis desalination, Membr. Water Treat., 5 (2014) 221–233.
  11. H. Elfil, A. Hamed, A. Hannachi, Technical evaluation of a small-scale reverse osmosis desalination unit for domestic water, Desalination, 203 (2007) 319–326.
  12. A. Antony, J.H. Low, S. Gray, A.E. Childress, P. Le-Clech, G. Leslie, Scale formation and control in high pressure membrane water treatment systems: a review, J. Membr. Sci., 383 (2011) 1–16.
  13. S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis membrane fouling and control strategies, Sci. Total Environ., 595 (2017) 567–583.
  14. O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, Hoboken, New Jersey, USA, 1998.
  15. S. Rjeb, A. Hannachi, R. Abdelhamid, Hydrodynamic investigation in an annular reactor with mixing time and residence time distribution: flow rates estimation with the gauss-newton gradient technique, Chem. Prod. Process Model., 6 (2011), doi: 10.2202/1934-2659.1539.
  16. E. Roth, M. Kessler, B. Fabre, A. Accary, Sodium chloride stimulus-response experiments in spiral wound reverse osmosis membranes: a new method to detect fouling, Desalination, 121 (1999) 183–193.
  17. P. Dydo, M. Turek, J. Ciba, Laboratory RO and NF processes fouling investigation by residence time distribution curves examination, Desalination, 164 (2004) 33–40.
  18. D. Hasson, A. Drak, C. Komlos, Q. Yang, R. Semiat, Detection of fouling on RO modules by residence time distribution analyses, Desalination, 204 (2007) 132–144.
  19. Q. Yang, A. Drak, D. Hasson, R. Semiat, RO module RTD analyses based on directly processing conductivity signals, J. Membr. Sci., 306 (2007) 355–364.
  20. A. Miskiewicz, G. Zakrzewska-Trznadel, A. Dobrowolski, A. Jaworska-Sobczak, Using tracer methods and experimental design approach for examination of hydrodynamic conditions in membrane separation modules, Appl. Radiat. Isot., 70 (2012) 837–847.
  21. T.Y. Qiu, P.A. Davies, Longitudinal dispersion in spiral wound RO modules and its effect on the performance of batch mode RO operations, Desalination, 288 (2012) 1–7.
  22. M. Li, Residence time distribution in RO channel, Desalination, 506 (2021) 115000, doi: 10.1016/j.desal.2021.115000.
  23. M. Sheoran, A. Chandra, H. Bhunia, P.K. Bajpai, H.J. Pant, Residence time distribution studies using radiotracers in chemical industry—a review, Chem. Eng. Commun., 205 (2018) 739–758.
  24. A. Bérard, B. Blais, G.S. Patience, Experimental methods in chemical engineering: residence time distribution—RTD, Can. J. Chem. Eng., 98 (2020) 848–867.
  25. A.E. Rodrigues, Residence time distribution (RTD) revisited, Chem. Eng. Sci., 230 (2021) 116188, doi: 10.1016/j.ces.2020.116188.
  26. N. Meftah, A. Ezzeddine, A. Bedoui, A. Hannachi, Hybrid neutralization and membrane process for fluoride removal from an industrial effluent, Membr. Water Treat., 11 (2020) 303–312.
  27. N. Meftah, A. Ezzeddine, A. Bedoui, A. Hannachi, Nanofiltration polishing membrane process for fluoride removal, Desal. Water Treat., 198 (2020) 90–97.
  28. H.S. Fogler, Elements of chemical reaction engineering, Chem. Eng. Sci., 42 (n.d.) 2493.
  29. M. Dülle, H. Özcoban, C.S. Leopold, The effect of different feed frame components on the powder behavior and the residence time distribution with regard to the continuous manufacturing of tablets, Int. J. Pharm., 555 (2019) 220–227.
  30. D. Chicco, M.J. Warrens, G. Jurman, The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Comput. Sci., 7 (2021) e623, doi: 10.7717/peerj-cs.623.
  31. D.A. Sievers, J.J. Stickel, Modeling residence-time distribution in horizontal screw hydrolysis reactors, Chem. Eng. Sci., 175 (2018) 396–404.
  32. L. Hua, J. Wang, Residence time distribution of particles in circulating fluidized bed risers, Chem. Eng. Sci., 186 (2018) 168–190.
  33. M. Sebastian Escotet-Espinoza, S. Moghtadernejad, S. Oka, Y. Wang, A. Roman-Ospino, E. Schäfer, P. Cappuyns, I. Van Assche, M. Futran, M. Ierapetritou, F. Muzzio, Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: experimental evaluation, Powder Technol., 342 (2019) 744–763.
  34. B. Berkowitz, H. Scher, S.E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res., 36 (2000) 149–158.
  35. B. Bijeljic, S. Rubin, H. Scher, B. Berkowitz, Non-Fickian transport in porous media with bimodal structural heterogeneity, J. Contam. Hydrol., 120–121 (2011) 213–221.
  36. N.K. Karadimitriou, V. Joekar-Niasar, M. Babaei, C.A. Shore, Critical role of the immobile zone in non-fickian two-phase transport: a new paradigm, Environ. Sci. Technol., 50 (2016) 4384–4392.
  37. R.E. Hayes, J.P. Mmbaga, Introduction to Chemical Reactor Analysis, CRC Press, Boca Raton, Florida, USA, 2012.
  38. T. Matsuo, K. Hanaki, S. Takizawa, H. Satoh, Advances in Water and Wastewater Treatment Technology: Molecular Technology, Nutrient Removal, Sludge Reduction, and Environmental Health, Elsevier, Amsterdam, Netherlands, 2001.
  39. T. Ishigami, H. Matsuyama, Numerical modeling of concentration polarization in spacer-filled channel with permeation across reverse osmosis membrane, Ind. Eng. Chem. Res., 54 (2015) 1665–1674.
  40. S.J. Altman, L.K. McGrath, H.D.T. Jones, A. Sanchez, R. Noek, P. Clem, A. Cook, C.K. Ho, Systematic analysis of micromixers to minimize biofouling on reverse osmosis membranes, Water Res., 44 (2010) 3545–3554.
  41. W. Lin, Y. Zhang, D. Li, X. Wang, X. Huang, Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: a 20-year review on research evolvement, Water Res., 198 (2021) 117146, doi: 10.1016/j.watres.2021.117146.
  42. R. Rahmawati, M.R. Bilad, N.I.M. Nawi, Y. Wibisono, H. Suhaimi, N. Shamsuddin, N. Arahman, Engineered spacers for fouling mitigation in pressure driven membrane processes: progress and projection, J. Environ. Chem. Eng., 9 (2021) 106285, doi: 10.1016/j.jece.2021.106285.
  43. M.R. Cruz-Díaz, A. Laureano, F.A. Rodríguez, L.F. Arenas, J.J.H. Pijpers, E.P. Rivero, Modelling of flow distribution within spacer-filled channels fed by dividing manifolds as found in stacks for membrane-based technologies, Chem. Eng. J., 423 (2021) 130232, doi: 10.1016/j.cej.2021.130232.
  44. W. Lin, R. Shao, X. Wang, X. Huang, Impacts of non-uniform filament feed spacers characteristics on the hydraulic and antifouling performances in the spacer-filled membrane channels: Experiment and numerical simulation, Water Res., 185 (2020) 116251, doi: 10.1016/j.watres.2020.116251.
  45. S. Kerdi, A. Qamar, J.S. Vrouwenvelder, N. Ghaffour, Fouling resilient perforated feed spacers for membrane filtration, Water Res., 140 (2018) 211–219.