References

  1. FAO, How to Feed the World 2050, Food and Agriculture Organization, 2009. Available at: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
  2. GWP, Regional Approaches to Food and Water Security in the Face of Climate Challenges, Global Water Partnership, 2012. Available at https://www.gwp.org/globalassets/global/aboutgwp/ publications/proceedings_regional-approaches-to-foodand- water-security_final.pdf
  3. IPCC, AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability, Intergovernmental Panel on Climate Change 2014. Available at https://www.ipcc.ch/report/ar5/wg2/ freshwater-resources/
  4. EC, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy, Off. J. Eur. Commun. L, 327 (2000) 1–73.
  5. EP, European Parliament Resolution of 12 March 2009 on the Water in the Light of the 5th World Water Forum to be Held in Istanbul on 16–22 March 2009, Off. J. Eur. Commun. C, 87E (2009) 157–162.
  6. UN, Human Rights and Access to Safe Drinking Water and Sanitation, Office of the Commissioner for Human Rights, 2010. Available at https://ap.ohchr.org/documents/dpage_e.aspx?si=A/HRC/RES/15/9
  7. UN, The Millennium Development Goals Report, Unites Nations, 2015. Available at https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%201).pdf
  8. W. Kanownik, A. Policht-Latawiec, J. Dąbrowska, Influence of human activities on water quality in two rural catchments – understanding the drivers and relationships for effective restoration, Desal. Water Treat., 206 (2020) 10–21.
  9. H. Wang, Q. Yang, H. Ma, J. Liang, Chemical compositions evolution of groundwater and its pollution characterization due to agricultural activities in Yinchuan Plain, northwest China, Environ. Res., 200 (2021) 111449, doi: 10.1016/j.envres.2021.111449.
  10. R. Khanna, S. Gupta, Agrochemicals as a potential cause of ground water pollution: a review, Int. J. Chem. Stud., 6 (2018) 985–990.
  11. O. Mititelu-Ionuș, D. Simulescu, S.M. Popescu, Environmental assessment of agricultural activities and groundwater nitrate pollution susceptibility: a regional case study (Southwestern Romania), Environ. Monit. Assess., 191 (2019) 501, doi: 10.1007/s10661-019-7648-0.
  12. A. Inyinbor Adejumoke, O. Adebesin Babatunde, P. Oluyori Abimbola, A. Adelani-Akande Tabitha, O. Dada Adewumi, A. Oreofe Toyin, Water Pollution: Effects, Prevention, And Climatic Impact, M. Glavan, Ed., Water Challenges of an Urbanizing World, 33 (2018) 33–47.
  13. M. Wang, D. Zhang, J. Dong, S.K. Tan, Application of constructed wetlands for treating agricultural runoff and agroindustrial wastewater: a review, Hydrobiologia, 805 (2018) 1–31.
  14. B. Baensch-Baltruschat, B. Kocher, C. Kochleus, F. Stock, G. Reifferscheid, Tyre and road wear particles - a calculation of generation, transport and release to water and soil with special regard to German roads, Sci. Total Environ., 752 (2021) 141939, doi: 10.1016/j.scitotenv.2020.141939.
  15. B. Ebrahimi, S. Ahmadi, K. Chapi, H. Amjadi, Risk assessment of water resources pollution from transporting of oil hazardous materials (Sanandaj-Marivan road, Kurdistan Province, Iran), Environ. Sci. Pollut. Res., 27 (2020) 35814–35827.
  16. Y.T. Hung, L.K. Wang, N.K. Shammas, Handbook of Environment and Waste Management, Volume 3: Acid Rain and Greenhouse Gas Pollution Control, World Scientific, 2020.
  17. J.O. Ighalo, A.G. Adeniyi, J.A. Adeniran, S. Ogunniyi, A systematic literature analysis of the nature and regional distribution of water pollution sources in Nigeria, J. Cleaner Prod., 283 (2021) 124566, doi: 10.1016/j.jclepro.2020.124566.
  18. P. Cheng, Q. Jin, H. Jiang, M. Hua, Z. Ye, Efficiency assessment of rural domestic sewage treatment facilities by a slacked-based DEA model, J. Cleaner Prod., 267 (2020) 122111, doi: 10.1016/j.jclepro.2020.122111.
  19. R. Pishgar, D. Morin, S.J. Young, J. Schwartz, A. Chu, Characterization of domestic wastewater released from ‘green’ households and field study of the performance of onsite septic tanks retrofitted into aerobic bioreactors in cold climate, Sci. Total Environ., 755 (2021) 142446, doi: 10.1016/j.scitotenv.2020.142446.
  20. H. Zhang, H. Li, H. Yu, S. Cheng, Water quality assessment and pollution source apportionment using multi-statistic and APCS-MLR modeling techniques in Min River Basin, China, Environ. Sci. Pollut. Res., 27 (2020) 41987–42000.
  21. A.H. Baghanam, V. Nourani, H. Aslani, H. Taghipour, Spatiotemporal variation of water pollution near landfill site: application of clustering methods to assess the admissibility of LWPI, J. Hydrology, 591 (2020) 125581, doi: 10.1016/j.jhydrol.2020.125581.
  22. S. Tenodi, D. Krčmar, J. Agbaba, K. Zrnić, M. Radenović, D. Ubavin, B. Dalmacija, Assessment of the environmental impact of sanitary and unsanitary parts of a municipal solid waste landfill, J. Environ. Management, 258 (2020) 110019, doi: 10.1016/j.jenvman.2019.110019.
  23. H. Huđek, K. Žganec, M.T. Pusch, A review of hydropower dams in Southeast Europe – distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea, Renewable Sustainable Energy Rev., 117 (2020) 109434, doi: 10.1016/j.rser.2019.109434.
  24. K.R. Olson, E. Krug, The Danube, an empire boundary river: settlements, invasions, navigation, and trade pathway, J. Water Resour. Prot., 12 (2020) 884–897.
  25. N. Ungureanu, V. Vlăduț, G. Voicu, Water scarcity and wastewater reuse in crop irrigation, Sustainability, 12 (2020) 9055, doi: 10.3390/su12219055.
  26. A.H. Ismail, D. Robescu, Assessment of water quality of the Danube River using water quality indices technique, Environ. Eng. Manage. J., 18 (2019) 1727–1737.
  27. H. Waidbacher, S.S. Drexler, P. Meulenbroek, Riverine Ecosystem Management, S. Schmutz, J. Sendzimir, Eds., Danube Under Pressure: Hydropower Rules the Fish, Springer, Berlin, 2018.
  28. D. Barceló, A.G. Kostianoy, The Handbook of Environmental Chemistry, 39 Series Editors: The Danube River Basin, Springer-Verlag Berlin Heidelberg, 2015.
  29. EP, European Parliament Resolution of 21 January 2010 on a European Strategy for the Danube Region, Off. J. C, 305E (2010) 14–18.
  30. USEPA, Edition of the Drinking Water Standards and Health Advisories, Office of Water, 2012. Available at www.epa.gov/dwstandardsregulations/drinkingwater-standards-and-health-advisorytables
  31. WHO, Guidelines for Drinking Water Quality: Fourth Edition Incorporating the First Addendum, World Health Organization, 2017.
  32. C. Iticescu, L.P. Georgescu, G. Murariu, C.M. Topa, M. Timofti, V. Pintilie, M. Arseni, Lower Danube water quality quantified through WQI and multivariate analysis, Water, 11 (2019) 1305, doi: 10.3390/w11061305.
  33. C. Iticescu, L.P. Georgescu, C.M. Topa, Assessing the Danube Water Quality Index in the City of Galati, Romania, Carpath, J. Earth Environ. Sci., 8 (2013) 155–164.
  34. R.K. Horton, An index number system for rating water quality, J. Water Pollut. Control Fed., 37 (1965) 300–306.
  35. A. Lumb, T.C. Sharma, J.F. Bibeault, A review of genesis and evolution of water quality index (WQI) and some future directions, Water Qual. Exposure Health, 3 (2011) 11–24.
  36. M. Kachroud, F. Trolard, M. Kefi, S. Jebari, G. Bourrié, Water quality indices: challenges and application limits in the literature, Water, 11 (2019) 361, doi: 10.3390/w11020361.
  37. J. Stagl, F.F. Hattermann, Impacts of climate change on the hydrological regime of the Danube River and its tributaries using an ensemble of climate scenarios, Water, 7 (2015) 6139–6172.
  38. H. Schiller, D. Miklós, J. Sass, The Danube River and Its Basin Physical Characteristics, Water Regime and Water Balance, M. Brilly, Ed., Hydrological Processes of the Danube River Basin, Springer, Dordrecht, 2010.
  39. N. Sommerwerk, T. Hein, M. Schneider-Jacoby, C. Baumgartner, A. Ostojic, R. Siber, J. Bloesch, M. Paunovic, K. Tockner, The Danube River Basin, K. Tockner, C.T. Robinson, U. Uehlinger, Eds., Rivers of Europe, Elsevier, Academic Press, Oxford, 2009.
  40. APHA, Standard Methods for Examination of Water and Wastewater, American Public Health Association, 1999.
  41. B. Welz, M. Sperling, Atomic Absorption Spectrometry, Wiley-VCH, 1999.
  42. EC, Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption, Off. J., L 330 (1998) 32–54.
  43. M.S. Gradilla-Hernández, J. de Anda, A. Garcia-Gonzalez, C.Y. Montes, H. Barrios-Piña, P. Ruiz-Palomino,
    D. Díaz-Vázquez, Assessment of the water quality of a subtropical lake using the NSF-WQI and a newly proposed ecosystem specific water quality index, Environ. Monit. Assess., 192 (2020) 296, doi: 10.1007/s10661-020-08265-7.
  44. Z. Wu, X. Wang, Y. Chen, Y. Cai, J. Deng, Assessing river water quality using water quality index in Lake Taihu Basin, China, Sci. Total Environ., 612 (2018) 914–922.
  45. EC, Directive 2006/44/EC of the European Parliament and of the Council of 6 September 2006 on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life, Off. J., L 264 (2006) 20–31.
  46. A. Bărbulescu, L. Barbeş, Assessing the water quality of the Danube River (at Chiciu, Romania) by statistical methods, Environ. Earth Sci., 79 (2020) 1–14.
  47. A. Hamid, S.U. Bhat, A. Jehangir, Local determinants influencing stream water quality, App. Water Sci., 10 (2020) 1–16.
  48. M. Varol, Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: a case study, Environ. Pollut., 266 (2020) 115417, doi: 10.1016/j.envpol.2020.115417.
  49. A. Grzywna, U. Bronowicka-Mielniczuk, Spatial and temporal variability of water quality in the Bystrzyca river basin, Poland, Water, 12 (2020) 190, doi: 10.3390/w12010190.
  50. A. Grzywna, U. Bronowicka-Mielniczuk, K. Połeć, Spatiotemporal changes of water pollution, and its sources and consequences in the Bug River, Poland, Desal. Water Treat., 243 (2021) 18–36.
  51. É. Kovács-Bokor, E. Domokos, B. Biró, Toxic metal phytoextraction potential and health-risk parameters of some cultivated plants when grown in metal-contaminated river sediment of Danube, near an industrial town, Environ. Geochem. Health, 43 (2021) 2317–2330.
  52. TNMN, Water Quality in the Danube River Basin – 2019, International Commission for the Protection of the Danube River, 2019. Available at https://www.icpdr.org/main/publications/tnmn-yearbooks
  53. M.M. Pantelić, D.M. Dolinaj, I.I. Lešešen, S.M. Savić, D.D. Milošević, Water quality of the Pannonian Basin rivers Danube, Sava, and Tisa and its correlation with air temperature in Serbia, Therm. Sci., 19 (2015) 477–485.
  54. T. Prelec, Eco-monsters & Eco-fighters: China’s Investments in Serbia’s Heavy Manufacturing Industry as Seen Through an Environmental Lens, Western Balkans at the Crossroads, The Prague Security Studies Institute, 2021.
  55. L.M. Takić, I.I. Mladenović-Ranisavljević, V.D. Vasović, L. Đorđević, The assessment of the Danube River water pollution in Serbia, Water Air Soil Pollut., 228 (2017) 1–9.
  56. G.A. Fox, R.A. Purvis, C.J. Penn, Streambanks: a net source of sediment and phosphorus to streams and rivers, J. Environ. Manage., 181 (2016) 602–614.
  57. N. Čerkasova, G. Umgiesser, A. Ertürk, Development of a hydrology and water quality model for a large transboundary river watershed to investigate the impacts of climate change – a SWAT application, Ecol. Eng., 124 (2018) 99–115.
  58. W.H.M.W. Mohtar, K.N.A. Maulud, N.S. Muhammad, S. Sharil, Z.M. Yaseen, Spatial and temporal risk quotient based river assessment for water resources management, Environ. Pollut., 248 (2019) 133–144.
  59. A. Marandi, M. Polikarpus, A. Jõeleht, A new approach for describing the relationship between electrical conductivity and major anion concentration in natural waters, Appl. Geochem., 38 (2013) 103–109.
  60. S. Schmidtko, L. Stramma, M. Visbeck, Decline in global oceanic oxygen content during the past five decades, Nature, 542 (2017) 335–339.
  61. R. Tian, Factors controlling hypoxia occurrence in estuaries, Chester River, Chesapeake Bay, Water, 12 (2020) 1961, doi: 10.3390/w12071961.
  62. W. Sun, Ch. Xia, M. Xu, J. Guo, G. Sun, Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River, Ecol. Indic., 66 (2016) 306–312.
  63. M. Varol, Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey, Environ. Pollut., 259 (2020) 113860, doi: 10.1016/j.envpol.2019.113860.
  64. H.M. Li, H.J. Tang, X.Y. Shi, C.S. Zhang, X.L. Wang, Increased nutrient loads from the Changjiang (Yangtze) River have led to increased harmful algal blooms, Harmful Algae, 39 (2014) 92–101.
  65. A. Dziallas, H.P. Grossart, Increasing oxygen radicals and water temperature select for toxic Microcystis sp., PLoS One, 6 (2011) e25569, doi: 10.1371/journal.pone.0025569.
  66. A.A. Asiedu, A.A. Hassan, M.A. Bein, Renewable energy, non-renewable energy, and economic growth: evidence from 26 European countries, Environ. Sci. Pollut. Res., 28 (2021) 11119–11128.
  67. P. Debels, R. Figueroa, R. Urrutia, R. Barra, X. Neill, Evaluation of water quality in the Chillán River (Central Chile) using physicochemical parameters and a modified water quality index, Environ. Monit. Assess., 110 (2005) 301–322.
  68. P.R. Kannel, S. Lee, Y.S. Lee, S.R. Kanel, S.P. Khan, Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment, Environ. Monit. Assess., 132 (2007) 93–110.
  69. A.A. Bondarenko, A.M. Ju, A.N. Chusov, Main inorganic ions and electric conductivity of polluted urban streams, Mag. Civ. Eng., 8 (2016) 37–44.
  70. Y. Ishikawa, M. Murata, T. Kawaguchi, Globally applicable water quality simulation model for river basin chemical risk assessment, J. Cleaner Prod., 239 (2019) 118027, doi: 10.1016/j.jclepro.2019.118027.
  71. G. Lux, Manufacturing in the Post-Industrial City: The Role of a “Hidden Sector” in the Development of Pécs, Hungary, In: Growth and Change in Post-socialist Cities of Central Europe, Routledge, 2021, pp. 94–112.
  72. M. Tripathi, S.K. Singal, Use of principal component analysis for parameter selection for development of a novel Water Quality Index: a case study of river Ganga India, Ecol. Indic., 96 (2019) 430–436.