References

  1. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  2. K.H. Chan, W. Chu, Degradation of atrazine by cobaltmediated activation of peroxymonosulfate: different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process, Water Res., 43 (2009) 2513–2521.
  3. L. Hu, G. Zhang, M. Liu, Q. Wang, P. Wang, Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology, Chemosphere, 212 (2018) 152–161.
  4. W.D. Oh, Z. Dong, T.T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects, Appl. Catal., B, 194 (2016) 169–201.
  5. Y.F. Huang, Y.H. Huang, Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-FeII,III two-stage oxidation process, J. Hazard. Mater., 162 (2009) 1211–1216.
  6. S.B. Hammouda, F. Zhao, Z. Safaei, D.L. Ramasamy, B. Doshi, M. Sillanpää, Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: influence of co-existing chemicals and UV irradiation, Appl. Catal., B, 233 (2018) 99–111.
  7. W. Wang, M. Chen, D. Wang, M. Yan, Z. Liu, Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates, Sci. Total Environ., 772 (2021) 145522, doi: 10.1016/j.scitotenv.2021.145522.
  8. J. Peng, Z. Wang, S. Wang, J. Liu, Y. Zhang, B. Wang, Z. Gong, M. Wang, H. Dong, J. Shi, H. Liu, G. Yan, G. Liu, S. Gao, Z. Cao, Enhanced removal of methylparaben mediated by cobalt/carbon nanotubes (Co/CNTs) activated peroxymonosulfate in chloride-containing water: reaction kinetics, mechanisms and pathways, Chem. Eng. J., 409 (2021) 128176, doi: 10.1016/j.cej.2020.128176.
  9. Y. Qi, R. Qu, J. Liu, J. Chen, G. Al-Basher, N. Alsultan, Z. Wang, Z. Huo, Oxidation of flumequine in aqueous solution by UV-activated peroxymonosulfate: kinetics, water matrix effects, degradation products and reaction pathways, Chemosphere, 237 (2019) 124484, doi: 10.1016/j.chemosphere.2019.124484.
  10. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  11. A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Sulfate radicalbased ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Appl. Catal., B, 85 (2009) 171–179.
  12. Y.R. Wang, W. Chu, Degradation of 2,4,5-trichlorophenoxyacetic acid by a novel electro-Fe(II)/oxone process using iron sheet as the sacrificial anode, Water Res., 45 (2011) 3883–3889.
  13. J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334 (2017) 1502–1517.
  14. A. Latif, S. Kai, Y. Si, Catalytic degradation of organic pollutants in Fe(III)/peroxymonosulfate (PMS) system: performance, influencing factors, and pathway, Environ. Sci. Pollut. Res., 26 (2019) 36410–36422.
  15. L. Sbardella, I. Velo Gala, J. Comas, S. Morera Carbonell, I. Rodríguez-Roda, W. Gernjak, Integrated assessment of sulfate-based AOPs for pharmaceutical active compound removal from wastewater, J. Cleaner Prod., 260 (2020) 121014, doi: 10.1016/j.jclepro.2020.121014.
  16. C.S. Liu, K. Shih, C.X. Sun, F. Wang, Oxidative degradation of propachlor by ferrous and copper ion activated persulfate, Sci. Total Environ., 416 (2012) 507–512.
  17. M. Xu, X. Gu, S. Lu, Z. Qiu, Q. Sui, Z. Miao, X. Zang, X. Wu, Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system, J. Hazard. Mater., 286 (2015) 7–14.
  18. J. Rodríguez-Chueca, C. Amor, T. Silva, D. Dionysiou, J.A. Peres, Treatment of winery wastewater by sulphate radicals: HSO5/transition metal/UV-A LEDs, Chem. Eng. J., 310 (2017) 473–483.
  19. C.M. Liu, Z.H. Diao, W.Y. Huo, L.J. Kong, J.J. Du, Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: synthesis, reactivity and mechanism, Environ. Pollut., 239 (2018) 698–705.
  20. L. Chen, T. Luo, S. Yang, J. Xu, Z. Liu, F. Wu, Efficient metoprolol degradation by heterogeneous copper ferrite/sulfite reaction, Environ. Chem. Lett., 16 (2018) 599–603.
  21. J. Wang, B. Hasaer, M. Yang, R. Liu, C. Hu, H. Liu, J. Qu, Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): comparison between Co2+, Cu2+, Fe2+ and Mn2+, Sci. Total Environ., 713 (2020) 136530, doi: 10.1016/j.scitotenv.2020.136530.
  22. C. Tan, Y. Dong, L. Shi, Q. Chen, S. Yang, X. Liu, J. Ling, X. He, D. Fu, Degradation of Orange II in ferrous activated peroxymonosulfate system: efficiency, situ EPR spin trapping and degradation pathway study, J. Taiwan Inst. Chem. Eng., 83 (2018) 74–81.
  23. L. Ling, D. Zhang, C. Fan, C. Shang, A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: the mechanisms, Water Res., 124 (2017) 446–453.
  24. W. Peng, Y. Dong, Y. Fu, L. Wang, Z. Wang, Non-radical reactions in persulfate-based homogeneous degradation processes: a review, Chem. Eng. J., 421 (2021) 127818, doi: 10.1016/j.cej.2020.127818.
  25. J. Yan, L. Min, L. Zhu, M.N. Anjum, Z. Jing, H. Tang, Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate, J. Hazard. Mater., 186 (2011) 1398–1404.
  26. Y. Zhou, X. Wang, C. Zhu, D.D. Dionysiou, G. Zhao, G. Fang, D. Zhou, New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation, Water Res., 142 (2018) 208–216.
  27. P. Hu, M. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications, Appl. Catal., B, 181 (2016) 103–117.
  28. S. Xiao, M. Cheng, H. Zhong, Z. Liu, Y. Liu, X. Yang, Q. Liang, Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review, Chem. Eng. J., 384 (2020) 123265, doi: 10.1016/j.cej.2019.123265.
  29. Y. Feng, D. Wu, H. Li, J. Bai, Y. Hu, C. Liao, X.-y. Li, K. Shih, Activation of persulfates using siderite as a source of ferrous ions: sulfate radical production, stoichiometric efficiency, and implications, ACS Sustainable Chem. Eng., 6 (2018) 3624–3631.
  30. L. Lai, H. Zhou, B. Lai, Heterogeneous degradation of bisphenol A by peroxymonosulfate activated with vanadiumtitanium magnetite: performance, transformation pathways and mechanism, Chem. Eng. J., 349 (2018) 633–645.
  31. M. Jin, M. Long, H. Su, P. Yue, Y. Zhang, Magnetically separable maghemite/montmorillonite composite as an efficient heterogeneous Fenton-like catalyst for phenol degradation, Environ. Sci. Pollut. Res., 24 (2016) 1926–1937.
  32. L.H. Hou, X.M. Li, Q. Yang, F. Chen, S.N. Wang, Y.H. Ma, Y. Wu, X.F. Zhu, X.D. Huang, D.B. Wang, Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: performance and mechanism for organic pollutant degradation, Sci. Total Environ., 663 (2019) 453–464.
  33. Y. Liu, J. Lang, T. Wang, A. Jawad, H. Wang, A. Khan, Z. Chen, Z. Chen, Enhanced degradation of isoproturon in soil through persulfate activation by Fe-based layered double hydroxide: different reactive species comparing with activation by homogenous Fe(II), Environ. Sci. Pollut. Res., 25 (2018) 26394–26404.
  34. X. Wu, X. Gu, S. Lu, M. Xu, X. Zang, Z. Miao, Z. Qiu, S. Qian, Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion, Chem. Eng. J., 255 (2014) 585–592.
  35. X. Wu, X. Gu, S. Lu, Z. Qiu, Q. Sui, X. Zang, Z. Miao, M. Xu, Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine, Sep. Purif. Technol., 147 (2015) 186–193.
  36. J. Zou, J. Ma, L. Chen, X. Li, Y. Guan, P. Xie, C. Pan, Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine, Environ. Sci. Technol., 47 (2013) 11685–11691.
  37. H. Tamura, K. Goto, T. Yotsuyanagi, M. Nagayama, Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III), Talanta, 21 (1974) 314–318.
  38. Z. Miao, X. Gu, S. Lu, M.L. Brusseau, N. Yan, Z. Qiu, Q. Sui, Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system, J. Hazard. Mater., 300 (2015) 530–537.
  39. X. Xue, Q. Gu, G. Pan, J. Liang, G. Huang, G. Sun, S. Ma, X. Yang, Nanocage structure derived from sulfonated betacyclodextrin intercalated layered double hydroxides and selective adsorption for phenol compounds, Inorg. Chem., 53 (2014) 1521–1529.
  40. J.W. Zhao, L.D. Deng, W. Zheng, S. Xu, Q.Q. Yu, X.H. Qiu, Nickel-induced structure transformation in hydrocalumite for enhanced ammonia decomposition, Int. J. Hydrogen Energy, 45 (2020) 12244–12255.
  41. P. Zhong, Q. Yu, J. Zhao, S. Xu, X. Qiu, J. Chen, Degradation of bisphenol A by Fe-Al layered double hydroxides: a new synergy of homo- and heterogeneous Fenton systems, J. Colloid Interface Sci., 552 (2019) 122–133.
  42. S. Xu, J. Zhao, L. Deng, J. Niu, X. Zhou, S. Zhang, X. Qiu, J. Chen, Adsorption mechanism of borate with different calcined layered double hydroxides in a molar ratio of 3:1, Desal. Water Treat., 155 (2019) 296–310.
  43. X. Zhong, Z. Zhang, T. Zhou, P. Lu, J. Cheng, S. Chen, Z. Shu, Y. Hong, Q. Wang, A. Umar, Flower-shaped Mg3Al1–xFex-CO3 layered double hydroxides derived adsorbents with tunable memory effect for environmental remediation, J. Nanosci. Nanotechnol., 18 (2018) 2609–2615.
  44. Z. Gao, K. Sasaki, X. Qiu, Structural memory effect of Mg-Al and Zn-Al layered double hydroxides in the presence of different natural humic acids: process and mechanism, Langmuir, 34 (2018) 5386–5395.
  45. M. Hadnadjev, T. Vulic, R. Marinkovic-Neducin, Y. Suchorski, H. Weiss, The iron oxidation state in Mg–Al–Fe mixed oxides derived from layered double hydroxides: an XPS study, Appl. Surf. Sci., 254 (2018) 4297–4302.
  46. C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion, Chemosphere, 55 (2004) 1225–1233.
  47. C. Liang, C.P. Liang, C.C. Chen, pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene, J. Contam. Hydrol., 106 (2009) 173–182.
  48. L. Zhou, J. Hu, H. Zhong, X. Li, Study of phenol removal using fluidized-bed Fenton process, Chem. Eng. Res. Des., 90 (2012) 377–382.
  49. Z. Liao, S. Dai, S. Long, Y. Yu, J. Ali, H. Wang, Z. Chen, Z. Chen, Pd based in situ AOPs with heterogeneous catalyst of FeMgAl layered double hydrotalcite for the degradation of bisphenol A and landfill leachate through multiple pathways, Environ. Sci. Pollut. Res., 25 (2018) 35623–35636.
  50. S.K. Rani, D. Easwaramoorthy, I.M. Bilal, M. Palanichamy, Studies on Mn(II)-catalyzed oxidation of α-amino acids by peroxomonosulphate in alkaline medium-deamination and decarboxylation: a kinetic approach, Appl. Catal., A, 369 (2009) 1–7.
  51. J. Zhou, J. Xiao, D. Xiao, Y. Guo, C. Fang, X. Lou, J. Liu, Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol, Chemosphere, 134 (2015) 446–451.
  52. S.B. Hammouda, F. Zhao, Z. Safaei, D.L. Ramasamy, B. Doshi, M. Sillanpää, Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: influence of co-existing chemicals and UV irradiation, Appl. Catal., B, 233 (2018) 99–111.
  53. B. Li, J. Zhu, Simultaneous degradation of 1,1,1-trichloroethane and solvent stabilizer 1,4-dioxane by a sono-activated persulfate process, Chem. Eng. J., 284 (2016) 750–763.
  54. T. Soltani, A. Tayyebi, B.K. Lee, Quick and enhanced degradation of bisphenol A by activation of potassium peroxymonosulfate to SO4 center dot-with Mn-doped BiFeO3 nanoparticles as a heterogeneous Fenton-like catalyst, Appl. Surf. Sci., 441 (2018) 853–861.
  55. W.D. Oh, Z. Dong, T.T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects, Appl. Catal., B, 194 (2016) 169–201.
  56. F. Qi, W. Chu, B. Xu, Modeling the heterogeneous peroxymonosulfate/Co-MCM41 process for the degradation of caffeine and the study of influence of cobalt sources, Chem. Eng. J., 235 (2014) 10–18.
  57. J.M. Monteagudo, A. Duran, I. San Martin, A. Carnicer, Roles of different intermediate active species in the mineralization reactions of phenolic pollutants under a UV-A/C photo-Fenton process, Appl. Catal., B, 106 (2011) 242–249.
  58. Y. Xu, J. Ai, H. Zhang, The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process, J. Hazard. Mater., 309 (2016) 87–96.
  59. W. Nie, Q. Mao, Y. Ding, Y. Hu, H. Tang, Highly efficient catalysis of chalcopyrite with surface bonded ferrous species for activation of peroxymonosulfate toward degradation of bisphenol A: a mechanism study, J. Hazard. Mater., 364 (2019) 59–68.
  60. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 566–571.
  61. Y. Li, D. Li, S. Fan, T. Yang, Q. Zhou, Facile template synthesis of dumbbell-like Mn2O3 with oxygen vacancies for efficient degradation of organic pollutants by activating peroxymonosulfate, Catal. Sci. Technol., 10 (2020) 864–875.
  62. D. He, Y. Cheng, Y. Zeng, H. Luo, K. Luo, J. Li, X. Pan, D. Barcelo, J.C. Crittenden, Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: theoretical and experimental studies, Chemosphere, 240 (2020) 124979,
    doi: 10.1016/j.chemosphere.2019.124979.
  63. X. Xu, D. Liu, W. Chen, S. Zong, Y. Liu, Waste control by waste: efficient removal of bisphenol A with steel slag, a novel activator of peroxydisulfate, Environ. Chem. Lett., 16 (2018) 1435–1440.
  64. X. Li, Z. Wang, B. Zhang, A.I. Rykov, M.A. Ahmed, J. Wang, FexCo3–xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate, Appl. Catal., B, 181 (2016) 788–799.
  65. L. Zhao, Y. Ji, D. Kong, J. Lu, Q. Zhou, X. Yin, Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process, Chem. Eng. J., 303 (2016) 458–466.