References

  1. L. Huang, Z. Luo, X. Huang, Y. Wang, J. Yan, W. Liu, Y. Guo, S.R. Babu Arulmani, M. Shao, H. Zhang, Applications of biomass-based materials to remove fluoride from wastewater: a review, Chemosphere, 301 (2022) 134679, doi: 10.1016/j.chemosphere.2022.134679.
  2. X. Tang, C. Zhou, W. Xia, Y. Liang, Y. Zeng, X. Zhao, W. Xiong, M. Cheng, Z. Wang, Recent advances in metal–organic framework-based materials for removal of fluoride in water: performance, mechanism, and potential practical application, Chem. Eng. J., 446 (2022) 137299, doi: 10.1016/j.cej.2022.137299.
  3. S.I. Alhassan, L. Huang, Y. He, L. Yan, B. Wu, H. Wang, Fluoride removal from water using alumina and aluminum-based composites: a comprehensive review of progress, Crit. Rev. Env. Sci. Technol., 51 (2021) 2051–2085.
  4. J. Danziger, L.E. Dodge, H. Hu, Role of renal function in the association of drinking water fluoride and plasma fluoride among adolescents in the United States: NHANES, 2013–2016, Environ. Res., 213 (2022) 113603, doi: 10.1016/j.envres.2022.113603.
  5. M. Abtahi, S. Dobaradaran, S. Jorfi, A. Koolivand, S.S. Khaloo, J. Spitz, H. Saeedi, N. Golchinpour, R. Saeedi, Age-sex specific disability-adjusted life years (DALYs) attributable to elevated levels of fluoride in drinking water: a national and subnational study in Iran, 2017, Water Res., 157 (2019) 94–105.
  6. K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, H. Zhang, T. Xiao, Removal of fluoride from industrial wastewater by using different adsorbents: a review, Sci. Total Environ., 773 (2021) 145535, doi: 10.1016/j.scitotenv.2021.145535.
  7. Y. Zhao, Q. Song, T. Ma, Z. Tian, M. Ji, Research progress in the modified/novel fluoride adsorbing materials, Ind. Water Treat., 38 (2018) 9–14.
  8. D. Khandare, S. Mukherjee, A review of metal oxide nanomaterials for fluoride decontamination from water environment, Mater. Today Proc., 18 (2019) 1146–1155.
  9. J. He, F. Zhang, S. Han, X. Li, X. Yao, H. Zhang, The distribution and genetic types of high-fluoride groundwater in northern China, Geology, 37 (2010) 621–626.
  10. L.N. Affonso, J.L. Marques, V.V.C. Lima, J.O. Gonçalves, S.C. Barbosa, E.G. Primel, T.A.L. Burgo, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval Jr., Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge, J. Hazard. Mater., 388 (2020) 122042, doi: 10.1016/j.jhazmat.2020.122042.
  11. B. Zhao, Y. Zhang, X. Dou, X. Wu, M. Yang, Defluoridation performance and application of granular Fe-Al-Ce trimetal oxide adsorbent by extrusion method for fluoride removal from groundwater, Chin. J. Environ. Eng., 7 (2013) 2801–2807.
  12. K. Xu, J. Lu, I.D. Tegladza, Q. Xu, Z. Yang, G. Lv, Combined metal/air fuel cell and electrocoagulation process: energy generation, flocs production and pollutant removal, Chemosphere, 255 (2020) 126925, doi: 10.1016/j.chemosphere.2020.126925.
  13. J. Nunes-Pereira, R. Lima, G. Choudhary, P.R. Sharma, S. Ferdov, G. Botelho, R.K. Sharma, S. Lanceros-Méndez, Highly efficient removal of fluoride from aqueous media through polymer composite membranes, Sep. Purif. Technol., 205 (2018) 1–10.
  14. F. Zhu, Z. Guo, X. Hu, Fluoride removal efficiencies and mechanism of schwertmannite from KMnO4/MnO2–Fe(II) processes, J. Hazard. Mater., 397 (2020) 122789, doi: 10.1016/j. jhazmat.2020.122789.
  15. N.A. Medellin-Castillo, R. Leyva-Ramos, E. Padilla-Ortega, R.O. Perez, J.V. Flores-Cano, M.S. Berber-Mendoza, Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions, J. Ind. Eng. Chem., 20 (2014) 4014–4021.
  16. P. Dhanasekaran, O. Sahu, Arsenate and fluoride removal from groundwater by sawdust impregnated ferric hydroxide and activated alumina (SFAA), Groundwater Sustainable Dev., 12 (2020) 100490, doi: 10.1016/j.gsd.2020.100490.
  17. S.M. Maliyekkal, A.K. Sharma, L. Philip, Manganese-oxidecoated alumina: a promising sorbent for defluoridation of water, Water Res., 40 (2006) 3497–3506.
  18. S.S. Tripathy, J.L. Bersillon, K. Gopal, Removal of fluoride from drinking water by adsorption onto
    alum-impregnated activated alumina, Sep. Purif. Technol., 50 (2006) 310–317.
  19. J. He, Y. Xu, Z. Xiong, B. Lai, L. Yang, The enhanced removal of phosphate by structural defects and competitive fluoride adsorption on cerium-based adsorbent, Chemosphere, 256 (2020) 127056, doi: 10.1016/j.chemosphere.2020.127056.
  20. U.S. Rashid, A.N. Bezbaruah, Citric acid modified granular activated carbon for enhanced defluoridation, Chemosphere, 252 (2020) 126639, doi: 10.1016/j.chemosphere.2020.126639.
  21. C. Ding, F. Xu, F. Liu, H. Wang, Y. Jiang, B. Sun, S. Zhu, The preparation of iron-aluminum double hydroxide and study on fluoride removal in water, Environ. Dev., 31 (2019) 90–93,95.
  22. H. Jiang, X. Li, L. Tian, T. Wang, Q. Wang, P. Niu, P. Chen, X. Luo, Defluoridation investigation of Yttrium by laminated Y-Zr-Al tri-metal nanocomposite and analysis of the fluoride sorption mechanism, Sci. Total Environ., 648 (2019) 1342–1353.
  23. M. Kim, C.E. Choong, S. Hyun, C.M. Park, G. Lee, Mechanism of simultaneous removal of aluminum and fluoride from aqueous solution by La/Mg/Si-activated carbon, Chemosphere, 253 (2020) 126580, doi: 10.1016/j.chemosphere.2020.126580.
  24. R.S. Sathish, N.S.R. Raju, G.S. Raju, G. Nageswara Rao, K.A. Kumar, C. Janardhana, Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut shell carbon, Sep. Sci. Technol., 42 (2007) 769–788.
  25. W.X. Gong, J.H. Qu, R.P. Liu, H.C. Lan, Adsorption of fluoride onto different types of aluminas, Chem. Eng. J., 189–190 (2012) 126–133.
  26. D. Kang, X. Yu, M. Ge, M. Lin, X. Yang, Y. Jing, Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres, Chem. Eng. J., 345 (2018) 252–259.
  27. G.F. El-Said, E.-S.M. Abdelrehim, M.E.-S. Elba, S.M.H.A. Kawy, A critical study of interactive fluoride adsorption by raw marine organisms and a synthetic organic 2-amino-3-cyano-4(4-nitrophenyl)-6-phenylpyridine as adsorbent tools, Environ. Monit. Assess., 191 (2019) 311, doi: 10.1007/s10661-019-7465-5.
  28. C. Lei, X. Zhu, B. Zhu, C. Jiang, Y. Le, J. Yu, Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions, J. Hazard. Mater., 321 (2017) 801–811.
  29. X. Yu, D. Kang, Y. Hu, S. Tong, M. Ge, C. Cao, W. Song, One-pot synthesis of porous magnetic cellulose beads for the removal of metal ions, RSC Adv., 4 (2014) 31362–31369.
  30. M. Casamassima, E. Darque-Ceretti, A. Etcheberry, M. Aucouturier, Acid—base behavior of aluminum and silicon oxides — a combination of two approaches: XPS and Lewis acido-basicity; rest potential and Brönsted acido-basicity, Appl. Surf. Sci., 52 (1991) 205–213.
  31. Y. Sun, S. Yang, C. Ding, Z. Jin, W. Cheng, Tuning the chemistry of graphene oxides by a sonochemical approach: application of adsorption properties, RSC Adv., 5 (2015) 24886–24892.
  32. P.K. Sharma, M. Jilavi, D. Burgard, R. Nass, H. Schmidt, Hydrothermal synthesis of nanosize α‐Al2O3 from seeded aluminum hydroxide, J. Am. Ceram. Soc., 81 (1998) 2732–2734.
  33. Y.-X. Zhang, Y. Jia, Preparation of porous alumina hollow spheres as an adsorbent for fluoride removal from water with low aluminum residual, Ceram. Int., 42 (2016) 17472–17481.
  34. Y. Sun, D. Shao, C. Chen, S. Yang, X. Wang, Highly efficient enrichment of radionuclides on graphene
    oxide-supported polyaniline, Environ. Sci. Technol., 47 (2013) 9904–9910.
  35. M. Zhang, Q. Yao, C. Lu, Z. Li, W. Wang, Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye, ACS Appl. Mater. Interfaces, 6 (2014) 20225–20233.
  36. U. Kumari, S.K. Behera, B.C. Meikap, A novel acid modified alumina adsorbent with enhanced defluoridation property: kinetics, isotherm study and applicability on industrial wastewater, J. Hazard. Mater., 365 (2019) 868–882.
  37. H.M. Cai, G.J. Chen, C.Y. Peng, Z.Z. Zhang, Y.Y. Dong, G.Z. Shang, X.H. Zhu, H.J. Gao, X.C. Wan, Removal of fluoride from drinking water using tea waste loaded with Al/Fe oxides: a novel, safe and efficient biosorbent, Appl. Surf. Sci., 328 (2015) 34–44.
  38. F. Li, J. Jin, Z. Shen, H. Ji, M. Yang, Y. Yin, Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@mSiO2@mLDH composites as sorbents, J. Hazard. Mater., 388 (2020) 121734, doi: 10.1016/j.jhazmat.2019.121734.
  39. Z. Jian, W. Zhu, Y. Jie, H. Zhang, Y. Zhang, X. Lin, X. Luo, Highly selective and efficient removal of fluoride from groundwater by layered Al-Zr-La tri-metal hydroxide, Appl. Surf. Sci., 435 (2017) 920–927.
  40. L. Chai, Y. Wang, Z. Na, W. Yang, X. You, Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water, Water Res., 47 (2013) 4040–4049.
  41. S. Guiza, F. Brouers, M. Bagane, Fluoride removal from aqueous solution by montmorillonite clay: kinetics and equilibrium modeling using new generalized fractal equation, Environ. Technol. Innovation, 21 (2020) 101187, doi: 10.1016/j. eti.2020.101187.
  42. L. Yan, W. Gu, N. Zhou, C. Ye, Y. Yang, Preparation and characterization of wheat straw biochar loaded with aluminium/lanthanum hydroxides: a novel adsorbent for removing fluoride from drinking water, Environ. Technol., 43 (2022) 2771–2784.
  43. X. Dou, D. Mohan, C.U. Pittman, Jr., S. Yang, Remediating fluoride from water using hydrous zirconium oxide, Chem. Eng. J., 198 (2012) 236–245.
  44. G. Mekhemer, Characterization of phosphated zirconia by XRD, Raman and IR spectroscopy, Colloids Surf., A, 141 (1998) 227–235.
  45. L. Liu, X. Qi, S. Yin, Q. Zhang, Y.S. Hu, In-situ formation of stable interface in solid-state batteries, ACS Energy Lett., 4 (2019) 1650–1657.
  46. Y. Zhao, Y. Liu, Y. Chen, X. Liu, X. Li, S. Gao, A treasure map for nonmetallic catalysts: optimal nitrogen and fluorine distribution of biomass-derived carbon materials for highperformance oxygen reduction catalysts, J. Mater. Chem. A, 9 (2021) 18251–18259.
  47. M. Ye, Y. Cao, R. Ding, Z. Lei, L. Jin, J. Zhang, Soft hard acid–base theory and its application, Chem. Ind. Times, 33 (2019) 28–31.