References

  1. P. Raizada, S. Sharma, A. Kumar, P. Singh, A.A.P. Khan, A.M. Asiri, Performance improvement strategies of CuWO4 photocatalyst for hydrogen generation and pollutant degradation, J. Environ. Chem. Eng., 8 (2020) 104230, doi: 10.1016/j.jece.2020.104230.
  2. S. Vignesh, S. Suganthi, J.K. Sundar, V. Raj, P.R.I. Devi, Highly efficient visible light photocatalytic and antibacterial performance of PVP capped Cd:Ag:ZnO photocatalyst nanocomposites, Appl. Surf. Sci., 479 (2019) 914–929.
  3. F. Shojaei, B. Mortazavi, X.Y. Zhuang, M. Azizi, Silicon diphosphide (SiP2) and silicon diarsenide (SiAs2): novel stable 2D semiconductors with high carrier mobilities, promising for water splitting photocatalysts, Mater Today Energy, 16 (2020) 100377, doi: 10.1016/j.mtener.2019.100377.
  4. T. Ishii, A. Anzai, A. Yamamoto, H. Yoshida, Calcium zirconate photocatalyst and silver cocatalyst for reduction of carbon dioxide with water, Appl. Catal., B, 277 (2020) 119192, doi: 10.1016/j.apcatb.2020.119192.
  5. H.A. Najafabadi, A.R. Fattahi, M. Asemi, G. Majid, Performance enhancement of dye-sensitized solar cells by plasma treatment of BaSnO3 photoanode, J. Alloys Compd., 818 (2020) 152856, doi: 10.1016/j.jallcom.2019.152856.
  6. Y.G. Wang, Y.C. Wang, J. Bai, S.B. Duan, R.M. Wang, W.-M. Lau, In-situ etching synthesis of 3D self-supported serrated Ni-WO3 for oxygen evolution reaction, J. Alloys Compd., 893 (2022) 162134, doi: 10.1016/j.jallcom.2021.162134.
  7. T. Sansenya, N. Masri, T. Chankhanittha, T. Senasu, J. Piriyanon, S. Mukdasai, S. Nanan, Hydrothermal synthesis of ZnO photocatalyst for detoxification of anionic azo dyes and antibiotic, J. Phys. Chem. Solids, 160 (2022) 110353, doi: 10.1016/j.jpcs.2021.110353.
  8. A.I. Ali, S. Moradi, S.R. Seyede, F. Ghanbari, E. Dehghanifard, B. Kakavandi, Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: enhancing synergy, catalytic performance and mechanism, Sep. Purif. Technol., 275 (2021) 119163, doi: 10.1016/j.seppur.2021.119163.
  9. A.M. Ali, M.A. Sayed, H. Algarni, V. Ganesh, M. Aslam, A.A. Ismail, M.H. El-Bery, Synthesis, characterization and photoelectric properties of Fe2O3 incorporated TiO2 photocatalyst nanocomposites, Catalysts, 11 (2021) 1062, doi: 10.3390/catal11091062.
  10. C. Guo, L.Z. Chu, Q. Zhang, Z. Li, G.X. Yang, F. Peng, The zinc vacancy induced CdS/ZnS Z-scheme structure as a highly stable photocatalyst for hydrogen production, J. Alloys Compd., 888 (2021) 161620, doi: 10.1016/j.jallcom.2021.161620.
  11. T. Senasu, S. Nijpanich, S. Juabrum, N. Chanlek, S. Nanan, CdS/BiOBr heterojunction photocatalyst with high performance for solar-light-driven degradation of ciprofloxacin and norfloxacin antibiotics, Appl. Surf. Sci., 567 (2021) 150850, doi: 10.1016/j.apsusc.2021.150850.
  12. Y. Liu, B. Wei, L.L. Xu, H. Gao, M.Y. Zhang, Generation of oxygen vacancy and OH radicals: a comparative study of Bi2WO6 and Bi2WO6–X nanoplates, ChemCatChem, 7 (2015) 4076–4084.
  13. C.H. Lu, R.Y. Chen, X. Wu, M.F. Fan, Y.H. Liu, Z.G. Le, S.J. Jiang, S.Q. Song, Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance, Appl. Surf. Sci., 360 (2016) 1016–1022.
  14. Ph. Boullay, G. Trolliard, D. Mercurio, J.M. Perez-Mato, L. Elcoro, Toward a unified approach to the crystal chemistry of Aurivillius-Type compounds.: I. The structural model, J. Solid State Chem., 164 (2002) 252–260.
  15. K. Akihiko, H. Satoshi, H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions, Chem. Lett., 28 (1999) 1103–1104.
  16. Z.Y. Jiang, X.Z. Liang, H.L. Zheng, Y.Y. Liu, Z.Y. Wang, P.G. Wang, X.Y. Zhang, X.Y. Qin, Y. Dai, B.B. Huang, Photocatalytic reduction of CO2 to methanol by three-dimensional hollow structures of Bi2WO6 quantum dots, Appl. Catal., B, 219 (2017) 209–215.
  17. F.Y. Zhu, Y.Z. Lv, J.J. Li, J. Ding, X.H. Xia, L.L. Wei, J.Q. Jiang, G.S. Zhang, Q.L. Zhao, Enhanced visible light photocatalytic performance with metal-doped Bi2WO6 for typical fluoroquinolones degradation: efficiencies, pathways and mechanisms, Chemosphere, 252 (2020) 126577, doi: 10.1016/j.chemosphere.2020.126577.
  18. M. Shang, W.Z. Wang, L. Zhang, H.L. Xu, Bi2WO6 with significantly enhanced photocatalytic activities by nitrogen doping, Mater. Chem. Phys., 120 (2010) 155–159.
  19. J. Ren, W.Z. Wang, S.M. Sun, L. Zhang, J. Chang, Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation, Appl. Catal., B, 92 (2009) 50–55.
  20. S.S. Zhang, W.H. Pu, A.Y. Chen, Y.K. Xu, Y.Y. Wang, C.Z. Yang, J.Y. Gong, Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi2WO6 under visible light, J. Hazard. Mater., 384 (2020) 121478, doi: 10.1016/j. jhazmat.2019.121478.
  21. Y.C. Bai, T.Y. Wang, X.Y. Zhao, W. Mao, S.X. Liu, Synthesis of novel ternary Bi2WO6/CeO2/g-C3N4 composites with enhanced visible light photocatalytic activity for removal of organic and Cr(IV) from wastewater, J. Mater. Sci.: Mater. Electron., 31 (2020) 17524–17534.
  22. C. Cui, R.H. Guo, H.Y. Xiao, E. Ren, Q.S. Song, C. Xiang, X.X. Lai, J. Lana, S.X. Jiang, Bi2WO6/Nb2CTX mXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation, Appl. Surf. Sci., 505 (2020) 144595, doi: 10.1016/j.apsusc.2019.144595.
  23. Z.M. Qiang, X.M. Liu, F. Li, T.H. Li, M. Zhang, H. Singh, M. Huttula, W. Cao, Iodine doped Z-scheme Bi2O2CO3/Bi2WO6 photocatalysts: facile synthesis, efficient visible light photocatalysis, and photocatalytic mechanism, Chem. Eng. J., 403 (2021) 126327 (1–42).
  24. M. Brigante, G. Zanini, M. Avena, Effect of humic acids on the adsorption of paraquat by goethite, J. Hazard. Mater., 184 (2010) 241–247.
  25. Y. Liu, B. Wei, L.L. Xu, H. Gao, M.Y. Zhang, Generation of oxygen vacancy and OH radicals: a comparative study of Bi2WO6 and Bi2WO6–X nanoplates, ChemCatChem, 7 (2016) 4076–4084.
  26. Y.L. Li, Y.M. Liu, J.S. Wang, E. Uchaker, Q.F. Zhang, S.B. Sun, Y.X. Huang, J.Y. Li, G.Z. Cao, Titanium alkoxide induced BiOBr-Bi2WO6 mesoporous nanosheet composites with much enhanced photocatalytic activity, J. Mater. Chem. A, 1 (2013) 7949–7956.
  27. W.H. Zhang, N. Yu, L.S. Zhang, K.W. Jiang, Y.Z. Chen, Z.G. Chen, Synthesis of Yb3+/Er3+ CO-doped Bi2WO6 nanosheets with enhanced photocatalytic activity, Mater. Lett., 163 (2016) 16–19.
  28. Z.K. Cui, J.Q. Zhou, D.W. Zeng, From BiOCl to Bi2WO6 in Bi–W–Cl–O solvothermal system: phase-morphology evolution and photocatalytic performance, Mater. Technol., 30 (2014) 23–27.
  29. Y.Y. Zhu, Y.J. Wang, Q. Ling, Y.F. Zhu, Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 clomposites, Appl. Catal., B, 200 (2017) 222–229.
  30. J. Tabla-Hernandez, A.G. Hernandez-Ramirez, E. Martinez-Tavera, P.F. Rodriguez-Espinosa, E. Mangas-Ramírez, Impacts on water quality by in-situ induced ozone-oxygen oxidation in a polluted urban reservoir, Sci. Total Environ., 735 (2020) 139364, doi: 10.1016/j.scitotenv.2020.139364.
  31. F. Zhang, B. Hong, W.S. Zhao, Y. Yang, J. Bao, C. Gao, S. Sun, Ozone modification as an efficient strategy for promoting the photocatalytic effect of TiO2 for air purification, Chem. Commun., 55 (2019) 3757–3760.
  32. L. Zhang, J.H. Ge, Y.J. Liu, X.Y. Zheng, P.W. Du, Ozone modification as an efficient strategy for photocatalytic nitrogen fixation under visible light irradiation, J. Porous Mater., 28 (2021) 825–834.
  33. S.P. Hu, C.Y. Xu, Z. Liang, Solvothermal synthesis of Bi2WO6 hollow structures with excellent visible-light photocatalytic properties, Mater. Lett., 95 (2013) 117–120.
  34. A. Etogo, R. Liu, J.B. Ren, L.W. Qi, C.C. Zheng, J.Q. Ning, Y.J. Zhong, Y. Hu, Facile one-pot solvothermal preparation of Mo-doped Bi2WO6 biscuit-like microstructures for visible-light-driven photocatalytic water oxidation, J. Mater. Chem. A, 4 (2016) 13242–13250.
  35. L. Zhang, W.Z. Wang, D. Jiang, E. Gao, S.M. Sun, Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies, Nano Res., 8 (2015) 821–831.
  36. Z. Nie, D.K. Ma, G.Y. Fang, W. Chen, S.M. Huang, Concave Bi2WO6 nanoplates with oxygen vacancies achieving enhanced electrocatalytic oxygen evolution in near-neutral water, J. Mater Chem. A, 4 (2015) 2438–2444.
  37. J.G. Wang, H. Liang, C. Zhang, B. Jin, Y. Men, Bi2WO6–X nanosheets with tunable Bi quantum dots and oxygen vacancies for photocatalytic selective oxidation of alcohols, Appl. Catal., B, 256 (2019) 117874, doi: 10.1016/j.apcatb.2019.117874.
  38. T.Y. Wang, J.Q. Liu, P.F. Wu, C.T. Feng, D.J. Wang, H.M. Hu, G.L. Xue, Direct utilization of air and water as feedstocks in the photo-driven nitrogen reduction reaction over a ternary Z-scheme SiW9Co3/PDA/BWO hetero-junction, J. Mater. Chem. A, 8 (2020) 16590–16598.
  39. R. Ahmad, R.S. Singh, B. Pal, A C3N4 surface passivated highly photoactive Au-TiO2 tubular nanostructure for the efficient H2 production from water under sunlight irradiation, Appl. Catal., B, 213 (2017) 9–17.
  40. H. Xu, J. Yan, Y.G. Xu, Y.H. Song, H.M. Li, J.X. Xia, C.J. Huang, Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity, Appl. Catal., B, 129 (2013) 182–193.
  41. X.J. Bai, L. Wang, Y.F. Zhu, Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization, ACS Catal., 2 (2012) 2769–2778.
  42. M. Shafique, M.S. Mahr, M. Yaseen, H.N. Bhatti, CQD/TiO2 nanocomposite photocatalyst for efficient visible lightd-riven purification of wastewater containing Methyl orange dye, Mater. Chem. Phys., 278 (2022) 125583, doi: 10.1016/j.matchemphys.2021.125583.
  43. A.S. Yusuff, I.I. Olateju, O.A. Adesina, TiO2/anthill clay as a heterogeneous catalyst for solar photocatalytic degradation of textile wastewater: catalyst characterization and optimization studies, Materialia, 8 (2019) 100484, doi: 10.1016/j.mtla.2019.100484.
  44. S. Danwittayakul, M. Jaisai, J. Dutta, Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites, Appl. Catal., B, 163 (2015) 1–8.
  45. J.H. Shariffuddin, M.I. Jones, D.A. Patterson, Greener photocatalysts: hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater, Chem. Eng. Res. Des., 91 (2013) 1693–1704.
  46. D. Gogoi, P. Makkar, R. Korde, M.R. Das, N.N. Ghosh, Exfoliated gC3N4 supported CdS nanorods as a S-scheme heterojunction photocatalyst for the degradation of various textile dyes, Adv. Powder Technol., 33 (2022) 103801, doi: 10.1016/j.apt.2022.103801.
  47. K. Ancy, M.R. Bindhu, J.S. Bai, M.K. Gatasheh, A.A. Hatamleh, S. Ilavenil, Photocatalytic degradation of organic synthetic dyes and textile dyeing waste water by Al and F co-doped TiO2 nanoparticles, Environ. Res., 206 (2022) 112492, doi: 10.1016/j.envres.2021.112492.
  48. Md. Rashid Al-Mamun, Md. Shofikul Islam, Md. Rasel Hossain, S. Kader, Md. Shahinoor Islam, Md. Zaved Hossain Khan, A novel and highly efficient Ag and GO co-synthesized ZnO nano photocatalyst for Methylene blue dye degradation under UV irradiation, Environ. Nanotechnol. Monit. Manage., 16 (2021) 100495, doi: 10.1016/j.enmm.2021.100495.