References

  1. S. Bhero, E. Navara, Chemistry, Metallurgy and Mechanism of Microstructural Transformation in Hadfield Steel, High Chromium Cast Iron and Austempered Ductile Iron, 26th International Conference on Metallurgy and Materials (METAL), Brno, Czech Republic, 2017, pp. 117–125.
  2. Z.Q. Tan, U. Engstrom, K. Li, Y. Liu, Effect of furnace atmosphere on sintering process of chromium-containing steel via powder metallurgy, J. Iron Steel Res. Int., 28 (2021) 889–900.
  3. S. Toyai, K. Vilipornjaroen, Y. Pornputtkul, K. Piyamongkala, U. Kasetsart, Adsorption Chromium(VI) in Electroplating Wastewater by Chitosan Flakes, 48th Kasetsart University Annual Conference, Kasetsart Univ., Thailand, 2010, pp. 17–25.
  4. M.A.H. Geiger, L.F. Scheffel, C.L.P. Carone, F.D.P. Morisso, S.R. Kunst, J.Z. Ferreira, C.T. Oliveira, Evaluation of sputtering chromium coating as a electroplating substitute, Matéria, 25 (2020) 16,
    doi: 10.1590/S1517-707620200002.1054.
  5. S. Sundarapandiyan, P.E. Brutto, G. Siddhartha, R. Ramesh, B. Ramanaiah, P. Saravanan, A.B. Mandal, Enhancement of chromium uptake in tanning using oxazolidine, J. Hazard. Mater., 190 (2011) 802–809.
  6. I. Kabdasli, O. Tunay, E. Daymen, S. Meric, The factors affecting chromium precipitation in leather tanning industry wastewater, Fresenius Environ. Bull., 7 (1998) 859–866.
  7. C. Vancea, G. Mosoarca, A. Negrea, A. Latia, R.M. Jurca, New glass-ceramic matrix for the chromium wastes immobilization, Rev. Rom. Mater., 46 (2016) 296–302.
  8. R. Galindo, C. Gargori, N. Fas, M. Llusar, G. Monros, New chromium doped powellite (Cr-CaMoO4) yellow ceramic pigment, Ceram. Int., 41 (2015) 6364–6372.
  9. M. Hubert, A.J. Faber, F. Akmaz, H. Sesigur, E. Alejandro, T. Maehara, S.R. Kahl, Stabilization of divalent chromium Cr(II) in soda-lime-silicate glasses, J. Non-Cryst. Solids, 403 (2014) 23–29.
  10. A. Basak, L. Ramrakhiani, S. Ghosh, R. Sen, A.K. Mandal, Preparation of chromium doped phosphate glass adopting microwave irradiation and comparative analysis of properties with conventional glass, J. Non-Cryst. Solids, 500 (2018) 11–17.
  11. X.R. Li, L.F. Jin, L. Huang, X.Y. Ge, H.Y. Deng, H.Y. Wang, Y.M. Li, L.Y. Chai, S.Q. Ma, Imidazolium-based cationic polymeric nanotraps for efficient removal of Cr2O72–, J. Environ. Chem. Eng., 9 (2021) 106357, doi: 10.1016/j.jece.2021.106357.
  12. E. Mourid, M. Lakraimi, L. Benaziz, High efficiency of calcined anionic clay to remove the chromate anions CrO42– from polluted water, French, 8 (2020) 26–47.
  13. H.K.S. Tan, Chromic acid removal by anion exchange, Can. J. Chem. Eng., 77 (1999) 143–149.
  14. N.N. Song, Y.B. Ma, The toxicity of HCrO4 and CrO42– to barley root elongation in solution culture: pH effect and modelling, Chemosphere, 171 (2017) 537–543.
  15. Y.F. Wang, H. Su, Y.L. Gu, X. Song, J.S. Zhao, Carcinogenicity of chromium and chemoprevention: a brief update, OncoTargets Ther., 10 (2017) 4065–4079.
  16. K.L. Ding, X.Y. Zhou, H. Hadiatullah, Y.L. Lu, G.Z. Zhao, S.R. Jia, R.F. Zhang, Y.P. Yao, Removal performance and mechanisms of toxic hexavalent chromium (Cr(VI)) with ZnCl2 enhanced acidic vinegar residue biochar, J. Hazard. Mater., 420 (2021) 126551, doi: 10.1016/j.jhazmat.2021.126551.
  17. X.Z. Feng, Y.K. Zhang, C.Y. Liang, J.G. Yu, X.Y. Jiang, GO/PDDA/Fe3O4 nanocomposites used for instaneous Cr(VI) removal and a reliable direct filtration-adsorption application, Desal. Water Treat., 153 (2019) 145–156.
  18. C.S. Peng, H. Meng, S.X. Song, S. Lu, A. Lopez-Valdivieso, Elimination of Cr(VI) from electroplating wastewater by electrodialysis following chemical precipitation, Sep. Sci. Technol., 39 (2004) 1501–1517.
  19. O. Njoya, S.X. Zhao, Y.F. Qu, J.M. Shen, B.Y. Wang, H.Y. Shi, Z.L. Chen, Performance and potential mechanism of Cr(VI) reduction and subsequent Cr(III) precipitation using sodium borohydride driven by oxalate, J. Environ. Manage., 275 (2020) 111165, doi: 10.1016/j.jenvman.2020.111165.
  20. B.H. Xie, C. Shan, Z. Xu, X.C. Li, X.L. Zhang, J.J. Chen, B.C. Pan, One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: reduction to Cr(III) and in situ Cr(III) precipitation, Chem. Eng. J., 308 (2017) 791–797.
  21. S.H. Qian, G.Q. Huang, J.S. Jiang, F. He, Y.T. Wang, Studies of adsorption behavior of crosslinked chitosan for Cr(VI), Se(VI), J. Appl. Polym. Sci., 77 (2000) 3216–3219.
  22. H.Z. Xie, Y.L. Wan, H. Chen, G.C. Xiong, L.Q. Wang, Q. Xu, X. Li, Q.H. Zhou, Cr(VI) adsorption from aqueous solution by UiO-66 modified corncob, Sustainability, 13 (2021) 12962, doi: 10.3390/su132312962.
  23. S. Edebali, E. Pehlivan, Removal of Cr(VI) from Aqueous Solutions by Ion Exchange-Microfiltration Hybrid Process, 2010 International Conference on Environmental Science and Development, World Acad Union-World Acad Press, Singapore, Singapore, 2010, pp. 243–247.
  24. Y.F. Ren, Y.H. Han, X.F. Lei, C. Lu, J. Liu, G.X. Zhang, B.L. Zhang, Q.Y. Zhang, A magnetic ion exchange resin with high efficiency of removing Cr(VI), Colloid Surf., A, 604 (2020) 125279, doi: 10.1016/j.colsurfa.2020.125279.
  25. A. Holda, E. Kisielowska, Biological removal of Cr(VI) ions from aqueous solutions by Trichoderma viride, Physicochem. Probl. Miner. Process., 49 (2013) 47–60.
  26. M. Sen, M.G. Dastidar, P.K. Roychoudhury, Biological removal of Cr(VI) using Fusarium solani in batch and continuous modes of operation, Enzyme Microb. Technol., 41 (2007) 51–56.
  27. S.Y. Li, Z.Q. Hu, S.B. Xie, H.Y. Liu, J.X. Liu, Removal of Cr(VI) from electroplating industry effluent via electrochemical reduction, Int. J. Electrochem. Sci., 13 (2018) 655–663.
  28. F.B. Yao, M.C. Jia, Q. Yang, K. Luo, F. Chen, Y. Zhong, L. He, Z.J. Pi, K.J. Hou, D.B. Wang, X.M. Li, Electrochemical Cr(VI) removal from aqueous media using titanium as anode: simultaneous indirect electrochemical reduction of Cr(VI) and in-situ precipitation of Cr(III), Chemosphere, 260 (2020) 127537, doi: 10.1016/j.chemosphere.2020.127537.
  29. H. Arslanoglu, H.S. Altundogan, F. Tumen, Photocatalytic reduction of Cr(VI) from aqueous solutions with formic acid in the presence of bauxite: kinetics and mechanism, Trans. Indian Inst. Met., 74 (2021) 3075–3084.
  30. C. Xu, P.F. Zhao, M. Cai, Z.G. Dan, S. Zeng, J.H. Du, P.Y. Yang, J. Xiong, Enhanced photocatalytic reduction of Cr(VI) by Cu2O/Bi5O7I microrods composites under visible light, J. Photochem. Photobiol., A, 395 (2020) 112495, doi: 10.1016/j.jphotochem.2020.112495.
  31. Q. Sun, H. Li, S.L. Zheng, Z.M. Sun, Characterizations of nano-TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr(VI), Appl. Surf. Sci., 311 (2014) 369–376.
  32. Y.C. Du, S.H. Zhang, J.S. Wang, J.S. Wu, H.X. Dai, Nb2O5 nanowires in-situ grown on carbon fiber: a high-efficiency material for the photocatalytic reduction of Cr(VI), J. Environ. Sci., 66 (2018) 358–367.
  33. X.W. Su, Z.H. Wang, Y. Huang, Z.Y. Miao, S.H. Wang, J.J. Wang, X.L. Zhang, X.M. Sun, H. Liu, Y.H. Sang, Triethanolamine interface modification of crystallized ZnO nanospheres enabling fast photocatalytic hazard-free treatment of Cr(VI) ions, Nanotechnol. Rev., 10 (2021) 847–856.
  34. J.K. Yang, S.M. Lee, M. Farrokhi, O. Giahi, M.S. Siboni, Photocatalytic removal of Cr(VI) with illuminated TiO2, Desal. Water Treat., 46 (2012) 375–380.
  35. X.Q. Li, Z. Hong, S.Z. Kang, L.X. Qin, G.D. Li, J. Mu, Photocatalytic Degradation Activity of TiO2 Nanotubes for Cr(VI), 3rd International Conference on Energy, Environment and Sustainable Development (EESD 2013), Trans Tech. Publications Ltd., Shanghai, Peoples R China, 2013, p. 715.
  36. B.Y. Zhang, G.H. Huang, M. Liu, D.M. Dong, B. Chen, W.C. Christine, ZnO-based solar photocatalysis for treatment of Cr(VI) contamination, Trans. Nonferrous Met. Soc. China, 14 (2004) 49–53.
  37. Y. Xia, R.Q. Gang, L. Xu, S.J. Huang, L.X. Zhou, J. Wang, Nanorod-pillared mesoporous rGO/ZnO/Au hybrids for photocatalytic Cr(VI) reduction: enhanced Cr(VI) adsorption and solar energy harvest, Ceram. Int., 46 (2020) 1487–1493.
  38. C.S. Shen, H. Li, Y.Z. Wen, F. Zhao, Y.P. Zhang, D.L. Wu, Y.B. Liu, F. Li, Spherical Cu2O-Fe3O4@chitosan bifunctional catalyst for coupled Cr-organic complex oxidation and Cr(VI) capturereduction, Chem. Eng. J., 383 (2020) 123105, doi: 10.1016/j.cej.2019.123105.
  39. X.C. Dou, C.L. Zhang, H.F. Shi, The simultaneous promotion of Cr(VI) photoreduction and tetracycline removal over 3D/2D Cu2O/BiOBr S-scheme nanostructures, Sep. Purif. Technol., 282 (2022) 120023, doi: 10.1016/j.seppur.2021.120023.
  40. W. Jiang, Q. Liu, Y. Tao, K.Q. Mu, Z. Wang, Y.M. Zhu, H.R. Yue, B. Liang, An environment-friendly strategy for onestep turning Cr(VI) contaminant into a Cr-loaded catalyst for CO2 utilization, Adv. Sustain. Syst., 2 (2018) 1700165, doi: 10.1002/adsu.201700165.