References

  1. X. Zhang, Y. Luo, M. Zhang, K.S. Goh, Modeling the Effectiveness of Management Practices for Reducing Pesticide Residues in Surface Water, in Pesticides in Surface Water: Monitoring, Modeling, Risk Assessment, and Management, ACS Publications, 2019, pp. 233–258.
  2. H. Kaneko, Pyrethroids: mammalian metabolism and toxicity, J. Agric. Food Chem., 59 (2011) 2786–2791.
  3. W. Tang, D. Wang, J. Wang, Z. Wu, L. Li, M. Huang, S. Xu, D. Yan, Pyrethroid pesticide residues in the global environment: an overview, Chemosphere, 191 (2018) 990–1007.
  4. S.S. Albaseer, Factors controlling the fate of pyrethroids residues during post-harvest processing of raw agricultural crops: an overview, Food Chem., 295 (2019) 58–63.
  5. P. Bhatt, Y. Huang, H. Zhan, S. Chen, Insight into microbial applications for the biodegradation of pyrethroid insecticides, Front. Microbiol., 10 (2019) 01778, doi: 10.3389/fmicb.2019.01778.
  6. A.R. Ribeiro, O.C. Nunes, M.F.R. Pereira, A.M.T. Silva, An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environ. Int., 75 (2015) 33–51.
  7. L. Ghimici, I.A. Dinu, Removal of some commercial pesticides from aqueous dispersions using as flocculant a thyminecontaining chitosan derivative, Sep. Purif. Technol., 209 (2019) 698–706.
  8. C. Fan, H. Dong, Y. Liang, J. Yang, G. Tang, W. Zhang, Y. Cao., Sustainable synthesis of HKUST-1 and its composite by biocompatible ionic liquid for enhancing visible-light photocatalytic performance, J. Cleaner Prod., 208 (2019) 353–362.
  9. Q. Wang, L. Chen, Y. Li, J. Yang, R. Yang, X. Yang, Magnetic nanocomposite-based TpPa-NO2 covalent organic framework for the extraction of pyrethroid insecticides in water, vegetable, and fruit samples, Food Anal. Methods, 16 (2023) 71–82.
  10. M. Cobas, J. Meijide, M. Sanromán, M. Pazos, Chestnut shells to mitigate pesticide contamination, J. Taiwan Inst. Chem. Eng., 61 (2016) 166–173.
  11. M.J. Amiri, M. Bahrami, B. Beigzadeh, A. Gil, A response surface methodology for optimization
    of 2,4-dichlorophenoxyacetic acid removal from synthetic and drainage water: a comparative study, Environ. Sci. Pollut. Res., 25 (2018) 34277–34293.
  12. M.J. Amiri, M. Bahrami, F. Dehkhodaie, Optimization of Hg(II) adsorption on bio-apatite based materials using CCD-RSM design: characterization and mechanism studies, J. Water Health, 17 (2019) 556–567.
  13. A. Bakka, R. Mamouni, N. Saffaj, A. Laknifli, A. Benlhachemi, B. Bakiz, M. El Haddad, M. Ait Taleb, A. Roudani, A. Faouzi, The treated eggshells as a new biosorbent for elimination of carbaryl pesticide from aqueous solutions: kinetics, thermodynamics and isotherms, Sci. Study Res.: Chem. Chem. Eng. Biotechnol. Food Ind., 17 (2016) 271–278.
  14. A. Bakka, M. Ait Taleb, N. Saffaj, A. Laknifli, R. Mamouni, A. Benlhachemi, B. Bakiz, Y. Diane., Patellidae shells waste as a biosorbent for the removal of aldrin pesticide from aqueous solutions, J. Eng. Sci. Technol., 13 (2018) 925–942.
  15. M.A. Baih, H. Saffaj, K. Aziz, A. Bakka, N. El Baraka, H. Zidouh, R. Mamouni, N. Saffaj, Statistical optimization of the elaboration of ceramic membrane support using Plackett–Burman and response surface methodology, Mater. Today Proc., 52 (2022) 128–136.
  16. A. Hethnawi, M. Alnajjar, A.D. Manasrah, A. Hassan, G. Vitale, R. Jeong, N.N. Nassar, Metformin removal from water using fixed-bed column of silica-alumina composite, Colloids Surf., A, 597 (2020) 124814, doi: 10.1016/j.colsurfa.2020.124814.
  17. T.M.S. Attia, X.L. Hu, Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies, Chemosphere, 93 (2013) 2076–2085.
  18. M.A. Baih, N. Saffaj, A. Bakka, R. Mamouni, H. Zidouh, N. El Qacimi, Clay ceramic support membrane optimization using factorial design approach, J. Appl. Membr. Sci. Technol., 25 (2021) 1–15.
  19. N. Sivarajasekar, N. Mohanraj, R. Baskar, S. Sivamani, Fixedbed adsorption of ranitidine hydrochloride onto microwave assisted—activated Aegle marmelos correa fruit shell: statistical optimization and breakthrough modelling, Arabian J. Sci. Eng., 43 (2018) 2205–2215.
  20. M.A. Baih, N. El Qacemi, H. Zidouh, A. Bakka, N. El Baraka, R. Mamouni, N. Saffaj, Elaboration of TiO2 ultrafiltration membrane deposited on Moroccan Sahara Clay, E3S Web Conf., 229 (2021) 01033, doi: 10.1051/e3sconf/202122901033.
  21. H.E. Reynel-Avila, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, J. Silvestre-Albero, Assessment of naproxen adsorption on bone char in aqueous solutions using batch and fixed-bed processes, J. Mol. Liq., 209 (2015) 187–195.
  22. M.A. Baih, H. Saffaj, A. Adam, A. Bakka, N. El Baraka, H. Zidouh, R. Mamouni, N. Saffaj, Application of the experimental design for the optimization of microfiltration membrane, J. Appl. Membr. Sci. Technol., 26 (2022) 95–106.
  23. N. Sivarajasekar, K. Balasubramani, N. Mohanraj, J.P. Maran, S. Sivamani, P.A. Koya, V. Karthik, Fixed-bed adsorption of atrazine onto microwave irradiated Aegle marmelos correa fruit shell: statistical optimization, process design and breakthrough modeling, J. Mol. Liq., 241 (2017) 823–830.
  24. M.A. Baih, H. Saffaj, A. Adam, A. Bakka, H. Zidouh, R. Mamouni, N. Saffaj, Processing and characterization of titania ultrafiltration ceramic membrane: response surface methodology optimization, Desal. Water Treat., 257 (2022) 96–109.
  25. A. Bakka, R. Mamouni, N. Saffaj, A. Laknifli, K. Aziz, A. Roudani, Removal of bifenthrin pesticide from aqueous solutions by treated patellidae shells using a new fixed-bed column filtration technique, Process. Saf. Environ. Prot., 143 (2020) 55–65.
  26. J.A. Onimisi, R. Ismail, K.S. Ariffin, N. Baharun, H.B. Hussin, A novel rapid mist spray technique for synthesis of single phase precipitated calcium carbonate using solid-liquid-gas process, Korean J. Chem. Eng., 33 (2016) 2756–2760.
  27. J. Chen, M. Hamon, H. Hu, Y. Chen, A. Rao, P. Eklund, R. Haddon, Solution properties of single-walled carbon nanotubes, Science, 282 (1998) 95–98.
  28. M. Ehrampoush, G. Ghanizadeh, M. Ghaneian, Equilibrium and kinetics study of Reactive red 123 dye removal from aqueous solution by adsorption on eggshell, J. Environ. Health Sci. Eng., 8 (2011) 101–106.
  29. M. Elkady, A.M. Ibrahim, M. Abd El-Latif, Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of Reactive red dye using eggshell biocomposite beads, Desalination, 278 (2011) 412–423.
  30. Z. Zhao, L. Zhang, H. Dai, Y. Du, X. Meng, R. Zhang, Y. Liu, J. Deng, Surfactant-assisted solvo-or hydrothermal fabrication and characterization of high-surface-area porous calcium carbonate with multiple morphologies, Microporous Mesoporous Mater., 138 (2011) 191–199.
  31. M. Abdel-Khalek, M.A. Rahman, A. Francis, Exploring the adsorption behavior of cationic and anionic dyes on industrial waste shells of egg, J. Environ. Chem. Eng., 5 (2017) 319–327.
  32. W.-F. Ho, H.-C. Hsu, S.-K. Hsu, C.-W. Hung, S.-C. Wu, Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction, Ceram. Int., 39 (2013) 6467–6473.
  33. Z. Wei, C. Xu, B. Li, Application of waste eggshell as low-cost solid catalyst for biodiesel production, Bioresour. Technol., 100 (2009) 2883–2885.
  34. J.S. Noh, J.A. Schwarz, Estimation of the point of zero charge of simple oxides by mass titration, J. Colloid Interface Sci., 130 (1989) 157–164.
  35. M. Shirzad-Siboni, A. Khataee, F. Vafaei, S.W. Joo, Comparative removal of two textile dyes from aqueous solution by adsorption onto marine-source waste shell: kinetic and isotherm studies, Korean J. Chem. Eng., 31 (2014) 1451–1459.
  36. M. Yusuf, K. Song, L. Li, Fixed-bed column and artificial neural network model to predict heavy metals adsorption dynamic on surfactant decorated graphene, Colloids Surf., A, 585 (2020) 124076, doi: 10.1016/j.colsurfa.2019.124076.
  37. N. Sivarajasekar, T. Paramasivan, S. Muthusaravanan, P. Muthukumaran, S. Sivamani, Defluoridation of water using adsorbents-a concise review, J. Environ. Biotechnol. Res., 6 (2017) 186–198.
  38. N. Sivarajasekar, R. Baskar, T. Ragu, K. Sarika, N. Preethi, T. Radhika, Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics, Appl. Water Sci., 7 (2017) 1987–1995.
  39. B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay, V.K. Gupta, S.H. Puttaiah, N. Marzban, Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed-bed systems, Chem. Eng. J., 346 (2018) 258–270.
  40. D.M. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York, 1984.
  41. R. Yang, R. Gao, Z. Qian, Y. Wang, Batch and fixed-bed column selective adsorption of C6, C8 and C10 linear α-olefins from binary liquid olefin/paraffin mixtures onto 5A and 13X microporous molecular sieves, Sep. Purif. Technol., 230 (2020) 115884, doi: 10.1016/j.seppur.2019.115884.
  42. H.S. Fogler, M. Gürmen, Elements of Chemical Reaction Engineering, 3rd ed., Prentice Hall, New Jersey, 1999.
  43. D.-M. Guo, Q.-D. An, R. Li, Z.-Y. Xiao, S.-R. Zhai, Ultrahigh selective and efficient removal of anionic dyes by recyclable polyethylenimine-modified cellulose aerogels in batch and fixed-bed systems, Colloids Surf., A, 555 (2018) 150–160.