References

  1. L. Duan, J. Song, X. Li, H. Yuan, S. Xu, Distribution of selenium and its relationship to the eco-environment in Bohai Bay seawater, Mar. Chem., 121 (2010) 87–99.
  2. P. Devi, R. Jain, A. Thakur, M. Kumar, N.K. Labhsetwar, M. Nayak, P. Kumar, A systematic review and meta-analysis of voltammetric and optical techniques for inorganic selenium determination in water, TrAC, Trends Anal. Chem., 95 (2017) 69–85.
  3. European Commission, Council Directive 98/83/EC of 93 November 1998 on the Quality of Water Intended for Human Consumption (1998/1983/EC), 1998.
  4. H. Tao, J.W.H. Lam, J.W. McLaren, Determination of selenium in marine certified reference materials by hydride generation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 8 (1993) 1067–1073.
  5. C. Xiong, M. He, B. Hu, On-line separation and preconcentration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry, Talanta, 76 (2008) 772–779.
  6. N. Maleki, A. Safavi, M.M. Doroodmand, Determination of selenium in water and soil by hydride generation atomic absorption spectrometry using solid reagents, Talanta, 66 (2005) 858–862.
  7. Y. He, J. Moreda-Piñeiro, M. Luisa Cervera, M. de la Guardia, Direct determination of dissolved selenium(IV) and selenium(VI) in sea-water by continuous flow hydride generation atomic fluorescence spectrometry, J. Anal. At. Spectrom., 13 (1998) 289–293.
  8. W.T. Buckley, J.J. Budac, D.V. Godfrey, K.M. Koenig, Determination of selenium by inductively coupled plasma mass spectrometry utilizing a new hydride generation sample introduction system, Anal. Chem., 64 (1992) 724–729.
  9. Y. Sun, J. Yang, Simultaneous determination of arsenic(III,V), selenium(IV,VI), and antimony(III,V) in natural water by coprecipitation and neutron activation analysis, Anal. Chim. Acta, 395 (1999) 293–300.
  10. E.M. Martinis, L.B. Escudero, P. Berton, R.P. Monasterio, M.F. Filippini, R.G. Wuilloud, Determination of inorganic selenium species in water and garlic samples with on-line ionic liquid dispersive microextraction and electrothermal atomic absorption spectrometry, Talanta, 85 (2011) 2182–2188.
  11. H. Li, Y. Luo, Z. Li, L. Yang, Q. Wang, Nanosemiconductorbased photocatalytic vapor generation systems for subsequent selenium determination and speciation with atomic fluorescence spectrometry and inductively coupled plasma mass spectrometry, Anal. Chem., 84 (2012) 2974–2981.
  12. Y. Xiong, F. Li, J. Wang, A. Huang, M. Wu, Z. Zhang, D. Zhu, W. Xie, Z. Duan, L. Su, Simple multimodal detection of selenium in water and vegetable samples by a catalytic chromogenic method, Anal. Methods, 10 (2018) 2102–2107.
  13. R. Inam, G. Somer, A direct method for the determination of selenium and lead in cow’s milk by differential pulse stripping voltammetry, Food Chem., 69 (2000) 345–350.
  14. Y. Shahbazi, F. Ahmadi, F. Fakhari, Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: an emphasis on permissible limits and risk assessment of exposure to heavy metals, Food Chem., 192 (2016) 1060–1067.
  15. M. Ashournia, A. Aliakbar, Determination of selenium in natural waters by adsorptive differential pulse cathodic stripping voltammetry, J. Hazard. Mater., 168 (2009) 542–547.
  16. S. Zvonimir, S.-G. Jaroslava, M. Nikola, K. Snezana, Development of a chronopotentiometric stripping method for the determination of selenium in mixed diets, Food Chem., 92 (2005) 771–776.
  17. I.E. Merino, E. Stegmann, M.E. Aliaga, M. Gomez, V. Arancibia, C. Rojas-Romo, Determination of Se(IV) concentration via cathodic stripping voltammetry in the presence of Cu(II) ions and ammonium diethyl dithiophosphate, Anal. Chim. Acta, 1048 (2019) 22–30.
  18. R. Piech, W.W. Kubiak, Determination of trace selenium on hanging copper amalgam drop electrode, Electrochim. Acta, 53 (2007) 584–589.
  19. V. Beni, G. Collins, D.W.M. Arrigan, Investigation into the voltammetric behaviour and detection of selenium(IV) at metal electrodes in diverse electrolyte media, Anal. Chim. Acta, 699 (2011) 127–133.
  20. C.F. Pereira, F.B. Gonzaga, A.M. Guarita-Santos, J.R. Souza De, Determination of Se(IV) by anodic stripping voltammetry using gold electrodes made from recordable CDs, Talanta, 69 (2006) 877–881.
  21. K. McLaughlin, D. Boyd, C. Hua, R. Smyth, Anodic stripping voltammetry of selenium(IV) at a gold fiber working electrode, Electroanalysis, 4 (1992) 689–693.
  22. M.E. Hrehocik, J.S. Lundgren, W. Bowyer, Anodic stripping voltammetric analysis of selenium: comparison of electrode geometries, Electroanalysis, 5 (1993) 289–294.
  23. S.H. Tan, S.P. Kounaves, Determination of selenium(IV) at a microfabricated gold ultramicroelectrode array using square wave anodic stripping voltammetry, Electroanalysis, 10 (1998) 364–368.
  24. R.W. Andrews, D.C. Johnson, Voltammetric deposition and stripping of selenium(IV) at a rotating gold-disk electrode in 0.1m perchloric acid, Anal. Chem., 47 (1975) 294–299.
  25. R. Segura, J. Pizarro, K. Díaz, A. Placencio, F. Godoy, E. Pino, F. Recio, Development of electrochemical sensors for the determination of selenium using gold nanoparticles modified electrodes, Sens. Actuators, B, 220 (2015) 263–269.
  26. A.O. Idris, N. Mabuba, O.A. Arotiba, Electroanalysis of selenium in water on an electrodeposited gold-nanoparticle modified glassy carbon electrode, J. Electroanal. Chem., 758 (2015) 7–11.
  27. Z. Tan, W. Wu, N. Yin, M. Jia, X. Chen, Y. Bai, H. Wu, Z. Zhang, P. Li, Determination of selenium in food and environmental samples using a gold nanocages/fluorinated graphene nanocomposite modified electrode, J. Food Compos. Anal., 94 (2020) 103628, doi: 10.1016/j.jfca.2020.103628.
  28. H. Wang, Y. Guo, H. Pan, Determination of selenium and copper in water and food by hierarchical dendritic nanogold modified glassy carbon electrodes, Analyst, 146 (2021) 4384–4390.
  29. M. Ochab, I. Gęca, M. Korolczuk, Determination of trace Se(IV) by anodic stripping voltammetry following double deposition and stripping steps, Talanta, 165 (2017) 364–368.
  30. Q. Zhang, X. Li, H. Shi, Hongzhou, Z. Yuan, Determination of trace selenium by differential pulse adsorptive stripping voltammetry at a bismuth film electrode, Electrochim. Acta, 55 (2010) 4717–4721.
  31. P. Sharifian, A. Aliakbar, Determination of Se(IV) by adsorptive cathodic stripping voltammetry at a Bi/Hg film electrode, Anal. Methods, 7 (2015) 2121–2128.
  32. B. Bas, K. Jedlinska, K. Wegiel, New electrochemical sensor with the renewable silver annular band working electrode: fabrication and application for determination of selenium(IV) by cathodic stripping voltammetry, Electrochem. Commun., 49 (2014) 79–82.
  33. F.C.O.L. Martins, D. De Souza, Ultrasensitive determination of selenium in foodstuffs and beverages using an electroanalytical approach, Microchem. J., 164 (2021) 105996, doi: 10.1016/j.microc.2021.105996.
  34. D. Suznjevic, S. Blagojevic, J. Vidic, M. Erceg, D. Vucelic, Determination of selenium(IV) by cathodic stripping voltammetry using a copper microelectrode, Microchem. J., 57 (1997) 255–260.
  35. F. Dara, Buchari, I. Noviandri, Preparation of copper amalgam (CuHg) as working electrode for analysis of selenium, IOP Conf. Ser.: Earth Environ. Sci., 160 (2018) 012024, doi: 10.1088/1755-1315/160/1/012024.
  36. A.A. Ramadan, H. Mandil, A. Shikh-Debes, Differential pulse anodic stripping voltammetric analysis of selenium(IV) at a gold electrode modified with O-Phenylenediamine-Nafion, Res. J. Pharm. Technol., 11 (2018) 2030–2035.
  37. H. Aydin, G. Somer, Anodic stripping voltammetry of selenium in the presence of copper ion, Anal. Sci., 5 (1989) 89–93.
  38. H. Wei, D. Pan, Y. Cui, H. Liu, G. Gao, J. Xia, Anodic stripping determination of selenium in seawater using an electrode modified with gold nanodendrites/perforated reduced graphene oxide, Int. J. Electrochem. Sci., 15 (2020) 1669–1680.
  39. Z. Azizi, A. Babakhanian, Fabricating a new electrochemically modified pencil graphite electrode based on acetophenone (2,4-dinitrophenyl)hydrazone for determining selenium in food and water samples, Anal. Methods, 10 (2018) 5205–5213.
  40. M. Ashournia, A. Aliakbar, Determination of selenium in natural waters by adsorptive differential pulse cathodic stripping voltammetry, J. Hazard. Mater., 168 (2009) 542–547.
  41. D.W. Bryce, A. Izquierdo, M.D. Luque de Castro, Flowinjection anodic stripping voltammetry at a gold electrode for selenium(IV) determination, Anal. Chim. Acta, 308 (1995) 96–101.
  42. A. Bond, Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A review, Analyst, 119 (1994) 1R–21R.
  43. M. Fleischmann, S. Pons, D. Rolison, P. Schmidt, Ultramicroelectrodes, Datatech Systems, Inc., Science Publishers, 1987.
  44. J.L.A. de Queiroz, C.A. Martínez-Huitle, P. Souza Castro, Real time monitoring of in situ generated hydrogen peroxide in electrochemical advanced oxidation reactors using an integrated Pt microelectrode, Talanta, 218 (2020) 121133, doi: 10.1016/j.talanta.2020.121133.
  45. H. Arida, Q. Mohsen, M. Schoning, Microfabrication, characterization and analytical application of a new thin-film silver microsensor, Electrochim. Acta, 54 (2009) 3543–3547.
  46. I. Gęca, M. Ochab, M. Korolczuk, Application of a solid lead microelectrode as a new voltammetric sensor for adsorptive stripping voltammetry of U(VI), Talanta, 207 (2020) 120309, doi: 10.1016/j.talanta.2019.120309.
  47. I. Gęca, M. Ochab, M. Korolczuk, Anodic stripping voltammetry of Tl(I) determination with the use of a solid bismuth microelectrode, J. Electrochem. Soc., 167 (2020) 086506, doi: 10.1149/1945-7111/ab8ce2.
  48. I. Gęca, M. Korolczuk, Sensitive determination of folic acid using a solid bismuth microelectrode by adsorptive stripping voltammetry, Electroanalysis, 32 (2020) 496–502.
  49. I. Rutyna, M. Korolczuk, Determination of lead and cadmium by anodic stripping voltammetry at bismuth film electrodes following double deposition and stripping steps, Sens. Actuators, B, 204 (2014) 136–141.
  50. I. Rutyna, M. Korolczuk, Determination of ultratrace thallium(I) by anodic stripping voltammetry at bismuth film electrodes following double deposition and stripping steps, Electroanalysis, 26 (2014) 2639–2643.
  51. I. Gęca, M. Korolczuk, Anodic stripping voltammetry following double deposition and stripping steps: application of a new approach in the course of lead ion determination, Talanta, 171 (2017) 321–326.
  52. I. Rutyna, M. Ochab, M. Korolczuk, Double deposition and stripping steps for trace determination of Au(III) using anodic stripping voltammetry, Electroanalysis, 27 (2015) 2486–2491.
  53. I. Gęca, M. Korolczuk, Sensitive anodic stripping voltammetric determination of indium(III) traces following double deposition and stripping steps, J. Electrochem. Soc., 164 (2017) H183–H187.
  54. H.W. Lee, M.A. Schmidt, R.F. Russell, N.Y. Joly, H.K. Tyagi, P. Uebel, P. St. J. Russell, Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers, Opt. Express, 19 (2011) 12180–12189.
  55. A. Kacanovska, Z. Rong, M. Schmidt, P. St. J. Russell, P. Vadgama, Bio-sensing using recessed gold-filled capillary amperometric electrodes, Anal. Bioanal. Chem., 398 (2010) 1687–1694.
  56. M.A. Schmidt, L.N. Prill Sempere, H.K. Tyagi, C.G. Poulton, P. St. J. Russell, Waveguiding and plasmon resonances in twodimensional photonic lattices of gold and silver nanowires, Phys. Rev. B, 77 (2008) 033417, doi: 10.1103/PhysRevB.77.033417.
  57. G.N. Noskova, E.A. Zakharova, V.I. Chernov, A.V. Zaichko, E.E. Elesova, A.S. Kabakaev, Fabrication and application of gold microelectrode ensemble based on carbon black–polyethylene composite electrode, Anal. Methods, 3 (2011) 1130–1135.
  58. X. Gu, K. Wang, J. Qiu, Y. Wang, S. Tian, Z. He, R. Zong, H.-B. Kraatz, Enhanced electrochemical and SERS signals by self-assembled gold microelectrode arrays: a dual readout platform for multiplex immumoassay of tumor biomarkers, Sens. Actuators, B, 334 (2021) 129674, doi: 10.1016/j. snb.2021.129674.
  59. A.F. Revzin, K. Sirkar, A. Simonian, M.V. Pishko, Glucose, lactate, and pyruvate biosensor arrays based on redox polymer/oxidoreductase nanocomposite thin-films deposited on photolithographically patterned gold microelectrodes, Sens. Actuators, B, 81 (2002) 359–368.
  60. S.-Y. Liu, Y.-P. Chen, F. Fang, J. Xu, G.-P. Sheng, H.-Q. Yu, G. Liu, Y.-C. Tian, Measurement of dissolved oxygen and its diffusivity in aerobic granules using a lithographicallyfabricated microelectrode array, Environ. Sci. Technol., 43 (2009) 1160–1165.
  61. M. Grabarczyk, A catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high contentrations of humic substances, Anal. Bioanal. Chem., 390 (2008) 979–986.
  62. G.M.S. Alves, J.M.C.S. Magalhaes, H.M.V.M. Soares, Simultaneous determination of nickel and cobalt using a solid bismuth vibrating electrode by adsorptive cathodic stripping voltammetry, Electroanalysis, 25 (2013) 1247–1255.
  63. I. Gęca, M. Ochab, M. Korolczuk, An adsorptive stripping voltammetry of nickel and cobalt at a solid lead electrode, Int. J. Environ. Anal. Chem., 96 (2016) 1264–1275.
  64. S.P. Kounaves, O. Yu. Nadzhafova, V. Tarasov, S.H. Tan, Ultramicroelectrode arrays modified with ionomer-entrapped silica films as potential voltammetric sensors for copper, lead and selenium, Anal. Sci., 17 (2001) 1031–1033.