References

  1. E. Adatoz, A.K. Avci, S. Keskin, Opportunities and challenges of MOF-based membranes in gas separations, Sep. Purif. Technol., 152 (2015) 207–237.
  2. M. Takht Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination, 235 (2009) 199–244.
  3. L.C. Tomé, D. Mecerreyes, C.S.R. Freire, L.P.N. Rebelo, I.M. Marrucho, Pyrrolidinium-based polymeric ionic liquid materials: new perspectives for CO2 separation membranes, J. Membr. Sci., 428 (2013) 260–266.
  4. I.M. Atadashi, M.K. Aroua, A.R. Abdul Aziz, N.M.N. Sulaiman, Membrane biodiesel production and refining technology: a critical review, Renewable Sustainable Energy Rev., 15 (2011) 5051–5062.
  5. J. Kim, B. Van der Bruggen, The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment, Environ. Pollut., 158 (2010) 2335–2349.
  6. W. Shi, B. He, J. Ding, J. Li, F. Yan, X. Liang, Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production, Bioresour. Technol., 101 (2010) 1501–1505.
  7. R. Ardito, A. Corigliano, A. Frangi, F. Rizzini, Advanced models for the calculation of capillary attraction in axisymmetric configurations, Eur. J. Mech. A. Solids, 47 (2014) 298–308.
  8. X. Chang, C. Zhang, Y. He, X. Dong, W. Jin, N. Xu, A comparative study of the performance of symmetric and asymmetric mixedconducting membranes, Chin. J. Chem. Eng., 17 (2009) 562–570.
  9. M. Ulbricht, Advanced functional polymer membranes, Polymer, 47 (2006) 2217–2262.
  10. S. Xiong, L. Li, L. Dong, J. Tang, G. Yu, C. Pan, Covalent-organic frameworks (COFs)-based membranes for CO2 separation, J. CO2 Util., 41 (2020) 101224, doi: 10.1016/j.jcou.2020.101224.
  11. E. Saljoughi, M. Sadrzadeh, T. Mohammadi, Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes, J. Membr. Sci., 326 (2009) 627–634.
  12. S. Kiani, S.M. Mousavi, N. Shahtahmassebi, E. Saljoughi, Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol, Appl. Surf. Sci., 359 (2015) 252–258.
  13. N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, C. Gao, A review of graphene-based separation membrane: materials, characteristics, preparation and applications, Desalination, 437 (2018) 59–72.
  14. Z. Rajabi, A.R. Moghadassi, S.M. Hosseini, M. Mohammadi, Preparation and characterization of polyvinylchloride based mixed matrix membrane filled with multi walled carbon nano tubes for carbon dioxide separation, J. Ind. Eng. Chem., 19 (2013) 347–352.
  15. M. Rastgar, A. Shakeri, A. Bozorg, H. Salehi, V. Saadattalab, Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes, Desalination, 421 (2017) 179–189.
  16. X. Wang, X. Ba, N. Cui, Z. Ma, L. Wang, Z. Wang, X. Gao, Preparation, characterisation, and desalination performance study of cellulose acetate membranes with MIL-53(Fe) additive, J. Membr. Sci., 590 (2019) 117057, doi: 10.1016/j.memsci.2019.04.061.
  17. O.M. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, J. Am. Chem. Soc., 117 (1995) 10401–10402.
  18. H. Hayashi, A.P. Côté, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Zeolite A imidazolate frameworks, Nat. Mater., 6 (2007) 501–506.
  19. J.Y. Lee, J.M. Roberts, O.K. Farha, A.A. Sarjeant, K.A. Scheidt, J.T. Hupp, Synthesis and gas sorption properties of a metalazolium framework (MAF) material, Inorg. Chem., 48 (2009) 9971–9973.
  20. F. Nouar, J. Eckert, J. Eubank, P. Forster, M. Eddaoudi, Zeolitelike metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H2-(rho- ZMOF) interaction studies, J. Am. Chem. Soc., 131 (2009) 2864–2870.
  21. L. Niu, X. Zhao, F. Wu, Z. Tang, H. Lv, J. Wang, M. Fang, J.P. Giesy, Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: bibliometric analysis, Sci. Total Environ., 783 (2021) 146838, doi: 10.1016/j. scitotenv.2021.146838.
  22. H. Kuringen, G. Eikelboom, I. Shishmanova, D. Broer, A.P.H.J. Schenning, Selective adsorption: responsive nanoporous smectic liquid crystal polymer networks as efficient and selective adsorbents (Adv. Funct. Mater. 32/2014), Adv. Funct. Mater., 24 (2014) 5022–5022.
  23. X. Ai, X. Hu, Research progress of organic-inorganic hybrid membrane, Prog. Chem., 16 (2004) 654.
  24. H. Dong, L. Zhang, H. Chen, C. Gao, Mixed matrix water treatment membrane: materials, preparation and properties, Prog. Chem., 26 (2014) 2007–2018.
  25. J.-K. Wu, C.-C. Ye, T. Liu, Q.-F. An, Y.-H. Song, K.-R. Lee, W.-S. Hung, C.-J. Gao, Synergistic effects of CNT and GO on enhancing mechanical properties and separation performance of polyelectrolyte complex membranes, Mater. Des., 119 (2017) 38–46.
  26. T. Moore, W. Koros, Sorption in zeolites modified for use in organic−inorganic hybrid membranes, Ind. Eng. Chem. Res., 47 (2011) 591–598.
  27. Y. Mansourpanah, S.S. Madaeni, A. Rahimpour, A. Farhadian, A.H. Taheri, Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability, J. Membr. Sci., 330 (2009) 297–306.
  28. Z. Zhao, X. Ma, A. Kasik, Z. Li, J. Lin, Gas separation properties of metal organic framework (MOF-5) membranes, Ind. Eng. Chem. Res., 52 (2012) 1102–1108.
  29. Q. Li, Q. Liu, J. Zhao, Y. Hua, J. Sun, J. Duan, W. Jin, High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity, J. Membr. Sci., 544 (2017) 68–78.
  30. Y. Meng, L. Shu, L. Liu, Y. Wu, L.-H. Xie, M.-J. Zhao, J.-R. Li, A high-flux mixed matrix nanofiltration membrane with highly water-dispersible MOF crystallites as filler, J. Membr. Sci., 591 (2019) 117360, doi: 10.1016/j.memsci.2019.117360.
  31. V. Nafisi, M.-B. Hägg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci., 459 (2014) 244–255.
  32. M.Z. Ahmad, T.A. Peters, N.M. Konnertz, T. Visser, C. Téllez, J. Coronas, V. Fila, W.M. de Vos, N.E. Benes,
    High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes, Sep. Purif. Technol., 230 (2020) 115858, doi: 10.1016/j.seppur.2019.115858.
  33. D. Zhao, Research progress of mixed matrix membrane for water treatment and separation with metal organic framework, Chem. Ind. Eng. Prog., 40 (2021) 1035, doi: 10.3390/membranes9070088.
  34. T.Y. Liu, H.G. Yuan, Y.Y. Liu, D. Ren, Y.C. Su, X. Wang, Metalorganic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity, ACS Nano, 12 (2018) 9253–9265.
  35. R. Dai, H. Guo, C.Y. Tang, M. Chen, J. Li, Z. Wang, Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds, Environ. Sci. Technol., 53 (2019) 13776–13783.
  36. J.-Y. Lee, C.Y. Tang, F. Huo, Fabrication of porous matrix membrane (PMM) using metal-organic framework as green template for water treatment, Sci. Rep.-UK, 4 (2014) 3740, doi: 10.1038/srep03740.
  37. Y. Xiao, W. Zhang, Y. Jiao, Y. Xu, H. Lin, Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination, J. Membr. Sci., 624 (2021) 119101, doi: 10.1016/j.memsci.2021.119101.
  38. J. Cao, Y. Su, Y. Liu, J. Guan, M. He, R. Zhang, Z. Jiang, Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation, J. Membr. Sci., 566 (2018) 268–277.
  39. Y. Meng, L. Shu, L.-H. Xie, M. Zhao, T. Liu, J.-R. Li, High performance nanofiltration in BUT-8(A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly, J. Taiwan Inst. Chem. Eng., 115 (2020) 331–338.
  40. Y. Lin, H.-C. Wu, Q. Shen, L. Zhang, K. Guan, T. Shintani, K.-L. Tung, T. Yoshioka, H. Matsuyama, Custom-tailoring metal-organic framework in thin-film nanocomposite nanofiltration membrane with enhanced internal polarity and amplified surface crosslinking for elevated separation property, Desalination, 493 (2020) 114649, doi: 10.1016/j.desal.2020.114649.
  41. K. Chen, P. Li, H. Zhang, H. Sun, X. Yang, D. Yao, X. Pang, X. Han, Q. Jason Niu, Organic solvent nanofiltration membrane with improved permeability by in-situ growth of metalorganic frameworks interlayer on the surface of polyimide substrate, Sep. Purif. Technol., 251 (2020) 117387, doi: 10.1016/j.seppur.2020.117387.
  42. J. Li, R. Liu, J. Zhu, X. Li, S. Yuan, M. Tian, J. Wang, P. Luis, B.V. Bruggen, J. Lin, Electrophoretic nuclei assembly of MOFs in polyamide membranes for enhanced nanofiltration, Desalination, 512 (2021) 115125, doi: 10.1016/j.desal.2021.115125.
  43. X. Zhang, Y. Li, C. Van Goethem, K. Wan, W. Zhang, J. Luo, I.F.J. Vankelecom, J. Fransaer, Electrochemically assisted interfacial growth of MOF membranes, Matter, 1 (2019) 1285–1292.
  44. S. He, B. Zhu, X. Jiang, G. Han, S. Li, C.H. Lau, Y. Wu, Y. Zhang, L. Shao, Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture, Proc. Natl. Acad. Sci. U.S.A., 119 (2022) e2114964119.
  45. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  46. N.M.A. Mahpoz, S.N.N.M. Makhtar, M.Z.M. Pauzi, N. Abdullah, M.A. Rahman, K.H. Abas, A.F. Ismail, M.H.D. Othman, J. Jaafar, ZIF-8 membrane supported on alumina hollow fiber with enhanced salt removal by forward osmosis, Desalination, 496 (2020) 114697, doi: 10.1016/j.desal.2020.114697.
  47. M. Bagherzadeh, A. Bayrami, M. Amini, Enhancing forward osmosis (FO) performance of polyethersulfone/polyamide (PES/PA) thin-film composite membrane via the incorporation of
    GQDs@UiO-66-NH2 particles, J. Water Process Eng., 33 (2020) 101107, doi: 10.1016/j.jwpe.2019.101107.
  48. M. He, L. Wang, Y. Lv, X. Wang, J. Zhu, Y. Zhang, T. Liu, Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal, Chem. Eng. J., 389 (2020) 124452, doi: 10.1016/j.cej.2020.124452.
  49. G.-R. Xu, J.-M. Xu, H.-J. Feng, H.-L. Zhao, S.-B. Wu, Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review, Desalination, 417 (2017) 19–35.
  50. X. Zhang, L. Shen, C.-Y. Guan, C.-X. Liu, W.-Z. Lang, Y. Wang, Construction of SiO2@MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis, J. Membr. Sci., 564 (2018) 328–341.
  51. S.E. Kwan, E. Bar-Zeev, M. Elimelech, Biofouling in forward osmosis and reverse osmosis: measurements and mechanisms, J. Membr. Sci., 493 (2015) 703–708.
  52. X.-P. Wang, J. Hou, F.-S. Chen, X.-M. Meng, In-situ growth of metal-organic framework film on a polydopamine-modified flexible substrate for antibacterial and forward osmosis membranes, Sep. Purif. Technol., 236 (2020) 116239, doi: 10.1016/j.seppur.2019.116239.
  53. M. Pejman, M.D. Firouzjaei, S.A. Aktij, P. Das, E. Zolghadr, H. Jafarian, A.A. Shamsabadi, M. Elliott, M.R. Esfahani, M. Sangermano, M. Sadrzadeh, E.K. Wujcik, A. Rahimpour, A. Tiraferri, Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks, J. Membr. Sci., 611 (2020) 118352, doi: 10.1016/j. memsci.2020.118352.
  54. S.F. Seyedpour, A. Rahimpour, G. Najafpour, Facile in-situ assembly of silver-based MOFs to surface functionalization of TFC membrane: a novel approach toward long-lasting biofouling mitigation, J. Membr. Sci., 573 (2019) 257–269.
  55. E.F. Barbosa, L.P. Silva, Nanoscale characterization of synthetic polymeric porous membranes: scrutinizing their stiffness, roughness, and chemical composition, J. Membr. Sci., 407–408 (2012) 128–135.
  56. Q. Li, J. Imbrogno, G. Belfort, X.-L. Wang, Making polymeric membranes antifouling via “grafting from” polymerization of zwitterions, J. Appl. Polym. Sci., 132 (2015) 41781, doi: 10.1002/ app.41781.
  57. A. Sotto, M. Orcajo, J. Arsuaga, G. Calleja, J. Landaburu-Aguirre, Preparation and characterization of MOF-PES ultrafiltration membranes, J. Appl. Polym. Sci., 132 (2015) 41633, doi: 10.1002/app.41633.
  58. E.M.V. Hoek, A.K. Ghosh, X. Huang, M. Liong, J.I. Zink, Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes, Desalination, 283 (2011) 89–99.
  59. F. Gholami, S. Zinadini, A.A. Zinatizadeh, A.R. Abbasi, TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane, Sep. Purif. Technol., 194 (2018) 272–280.
  60. M. Dehghankar, T. Mohammadi, M.T. Moghadam, M.A. Tofighy, Metal-organic framework/zeolite nanocrystal/polyvinylidene fluoride composite ultrafiltration membranes with flux/antifouling advantages, Mater. Chem. Phys., 260 (2021) 124128, doi: 10.1016/j.matchemphys.2020.124128.
  61. H. Sun, B. Tang, P. Wu, Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties, J. Membr. Sci., 551 (2018) 283–293.
  62. Y. Gong, S. Gao, Y. Tian, Y. Zhu, W. Fang, Z. Wang, J. Jin, Thinfilm nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination, J. Membr. Sci., 600 (2020) 117874, doi: 10.1016/j.memsci.2020.117874.
  63. Z. Gu, S. Yu, J. Zhu, P. Li, X. Gao, R. Zhang, Incorporation of lysine-modified UiO-66 for the construction of thin-film nanocomposite nanofiltration membrane with enhanced water flux and salt selectivity, Desalination, 493 (2020) 114661, doi: 10.1016/j.desal.2020.114661.
  64. Y. Zhang, X. Cheng, X. Jiang, J.J. Urban, C.H. Lau, S. Liu, L. Shao, Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations, Mater. Today, 36 (2020) 40–47.
  65. K. Wang, Y. Qin, S. Quan, Y. Zhang, P. Wang, H. Liang, J. Ma, X.Q. Cheng, Development of highly permeable polyelectrolytes (PEs)/UiO-66 nanofiltration membranes for dye removal, Chem. Eng. Res. Des. 147 (2019) 222–231.
  66. X.-Y. Gong, Z.-H. Huang, H. Zhang, W.-L. Liu, X.-H. Ma, Z.-L. Xu, C.Y. Tang, Novel high-flux positively charged composite membrane incorporating titanium-based MOFs for heavy metal removal, Chem. Eng. J., 389 (2020) 125706, doi: 10.1016/j.cej.2020.125706.
  67. T. Uemura, K. Kotera, M. Henmi, H. Tomioka, Membrane technology in seawater desalination: history, recent developments and future prospects, Desal. Water Treat., 33 (2011) 283–288.
  68. D. Li, H. Wang, Recent developments in reverse osmosis desalination membranes, J. Mater. Chem., 20 (2010) 4551–4566.
  69. M.J. Kotelyanskii, N.J. Wagner, M.E. Paulaitis, Atomistic simulation of water and salt transport in the reverse osmosis membrane FT-30, J. Membr. Sci., 139 (1998) 1–16.
  70. G.M. Geise, H.B. Park, A.C. Sagle, B.D. Freeman, J.E. McGrath, Water permeability and water/salt selectivity tradeoff in polymers for desalination, J. Membr. Sci., 369 (2011) 130–138.
  71. F. Wang, T. Zheng, R. Xiong, P. Wang, J. Ma, Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: effect of particle size and dispersion in selective layer, Chemosphere, 233 (2019) 524–531.
  72. L. Liu, X. Xie, S. Qi, R. Li, X. Zhang, X. Song, C. Gao, Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal, J. Membr. Sci., 580 (2019) 101–109.
  73. N. Song, Y. Sun, X. Xie, D. Wang, F. Shao, L. Yu, L. Dong, Doping MIL-101(Cr)@GO in polyamide nanocomposite membranes with improved water flux, Desalination, 492 (2020) 114601, doi: 10.1016/j.desal.2020.114601.