References
- W.A. Jury, H.J. Vaux Jr., The emerging global water crisis:
managing scarcity and conflict between water users,
Adv. Agron., 95 (2007) 1–76.
- N. AlSawaftah, W. Abuwatfa, N. Darwish, G. Husseini,
A comprehensive review on membrane fouling: mathematical
modelling, prediction, diagnosis, and mitigation,
Water, 13 (2021) 1327, doi: 10.3390/w13091327.
- H.F. Ridgway, A. Kelly, C. Justice, B.H. Olson, Microbial
fouling of reverse-osmosis membranes used in advanced
wastewater treatment technology: chemical, bacteriological,
and ultrastructural analyses, Appl. Environ. Microbiol.,
45 (1983) 1066–1084.
- G. Belfort, R.H. Davis, A.L. Zydney, The behavior of suspensions
and macromolecular solutions in crossflow microfiltration,
J. Membr. Sci., 96 (1994) 1–58.
- M.F.A. Goosen, S.S. Sablani, D. Jackson, Fouling of reverse
osmosis and ultrafiltration membranes: a critical review,
Sep. Sci. Technol., 39 (2005) 2261–2297.
- S. Shirazi, C.-J. Lin, D. Chen, Inorganic fouling of pressuredriven
membrane processes — a critical review, Desalination,
250 (2010) 236–248.
- Q.-F. Liu, S.-H. Kim, Evaluation of membrane fouling models
based on bench-scale experiments: a comparison between
constant flowrate blocking laws and artificial neural network
(ANNs) model, J. Membr. Sci., 310 (2008) 393–401.
- S. Gray, R. Semiat, M.C. Duke, A. Rahardianto, Y. Cohen,
Seawater Use and Desalination Technology, In: Treatise on
Water Science, Elsevier, 2011, pp. 73–109.
- J.-L. Dirion, M. Cabassud, M.V. Le Lann, G. Casamatta, Development
of adaptive neural networks for flexible control of batch
processes, Chem. Eng. J. Biochem. Eng. J., 63 (1996) 65–77.
- W. Richard Bowen, M.G. Jones, J.S. Welfoot, H.N.S. Yousef,
Predicting salt rejections at nanofiltration membranes using
artificial neural networks, Desalination, 129 (2000) 147–162.
- A. Kapoor, S. Balasubramanian, P. Muthamilselvi, V. Vaishampayan,
S. Prabhakar, Lab-on-a-Chip Devices for Water
Quality Monitoring, Inamuddin, A. Asiri, Eds., Nanosensor
Technologies for Environmental Monitoring. Nanotechnology
in the Life Sciences, Springer, Cham, 2020.
- A. Jang, Z. Zou, K.K. Lee, C.H. Ahn, P.L. Bishop, State-of-the-art
lab chip sensors for environmental water monitoring, Meas. Sci.
Technol., 22 (2011) 032001, doi: 10.1088/0957-0233/22/3/032001.
- X. Pascual, H. Gu, A.R. Bartman, A. Zhu, A. Rahardianto,
J. Giralt, R. Rallo, P.D. Christofides, Y. Cohen, Data-driven
models of steady state and transient operations of spiral-wound
RO plant, Desalination, 316 (2013) 154–161.
- A. Abdelrasoul, H. Doan, A. Lohi, A mechanistic model for
ultrafiltration membrane fouling by latex, J. Membr. Sci.,
433 (2013) 88–99.
- N. Peña, S. Gallego, F. del Vigo, S.P. Chesters, Evaluating
impact of fouling on reverse osmosis membranes performance,
Desal. Water Treat., 51 (2012) 958–968.
- B. Gu, X.Y. Xu, C.S. Adjiman, A predictive model for spiral
wound reverse osmosis membrane modules: the effect of
winding geometry and accurate geometric details, Comput.
Chem. Eng., 96 (2017) 248–265.
- R. Rivas-Perez, J. Sotomayor-Moriano, G. Pérez-Zuñiga,
M.E. Soto-Angles, Real-time implementation of an expert
model predictive controller in a pilot-scale reverse osmosis
plant for brackish and seawater desalination, Appl. Sci., 9 (2019)
2932, doi: 10.3390/app9142932.
- U. Ahmed, R. Mumtaz, H. Anwar, A.A. Shah, R. Irfan, J. García-
Nieto, Efficient water quality prediction using supervised
machine learning, Water, 11 (2019) 2210, doi: 10.3390/w11112210.
- G. Hayder, I. Kurniawan, H.M. Mustafa, Implementation of
machine learning methods for monitoring and predicting water
quality parameters, Biointerface Res. Appl. Chem., 11 (2021)
9285–9295.
- A.H. Haghiabi, A.H. Nasrolahi, A. Parsaie, Water quality
prediction using machine learning methods, Water Qual.
Res. J., 53 (2018) 3–13.
- N. AlSawaftah, W. Abuwatfa, N. Darwish, G. Husseini,
A comprehensive review on membrane fouling: mathematical
modelling, prediction, diagnosis, and mitigation, Water,
13 (2021) 1327, doi: 10.3390/w13091327.
- A. Kadiwal, Water Quality, Kaggle, 25 Apr. 2021, Available
at https://www.kaggle.com/datasets/adityakadiwal/waterpotability
- Y. Zhang, Support Vector Machine Classification Algorithm
and Its Application, C. Liu, L. Wang, A. Yang, Eds., Information
Computing and Applications, ICICA 2012, Communications
in Computer and Information Science, Vol. 308, Springer,
Berlin, Heidelberg, 2012, pp. 179–186. doi: 10.1007/978-3-642-34041-3_27
- K. Taunk, S. De, S. Verma, A. Swetapadma, A Brief Review of
Nearest Neighbor Algorithm for Learning and Classification,
2019 International Conference on Intelligent Computing
and Control Systems (ICCS), IEEE, Madurai, India, 2019,
pp. 1255–1260. doi: 10.1109/
ICCS45141.2019.9065747
- P.O. Gislason, J.A. Benediktsson, J.R. Sveinsson, Random Forest
Classification of Multisource Remote Sensing and Geographic
Data, IGARSS 2004. 2004 IEEE International Geoscience and
Remote Sensing Symposium, IEEE, Anchorage, AK, USA,
2004, pp. 1049–1052. doi: 10.1109/
IGARSS.2004.1368591
- K.P. Singh, A. Basant, A. Malik, G. Jain, Artificial neural network
modeling of the river water quality—a case study, Ecol. Modell.,
220 (2009) 888–895.
- J. Davis, M. Goadrich, The Relationship Between Precision-
Recall and ROC Curves, Proceedings of the 23rd International
Conference on Machine Learning, Pittsburgh, PA, 2006,
pp. 233–240.
doi: 10.1145/1143844.
1143874
- J.N. Mandrekar, Receiver operating characteristic curve
in diagnostic test assessment, J. Thoracic Oncol., 5 (2010)
1315–1316.