References

  1. R. Elkacmi, M. Bennajah, Advanced oxidation technologies for the treatment and detoxification of olive mill wastewater: a general review, J. Water Reuse Desal., 9 (2019) 463–505.
  2. A.L. Gonçalves, J.C.M. Pires, M. Simões, A review on the use of microalgal consortia for wastewater treatment, Algal Res., 24 (2016) 403–415.
  3. O. Fawzi, S. Khasawneh, P. Palaniandy, Occurrence and removal of pharmaceuticals in wastewater treatment plants, Process Saf. Environ. Prot., 150 (2021) 532–556.
  4. R. Elkacmi, O. Boudouch, A. Hasib, M. Bouzaid, M. Bennajah, Photovoltaic electrocoagulation treatment of olive mill wastewater using an external-loop airlift reactor, Sustainable Chem. Pharm., 17 (2020) 100274, doi: 10.1016/j.scp.2020.100274.
  5. N. Abdel-Raouf, Microalgae and wastewater treatment, Saudi J. Biol. Sci., 19 (2012) 257–275.
  6. F. Bélanger-lépine, A. Tremblay, Y. Huot, S. Barnabé, Cultivation of an algae-bacteria consortium in wastewater from and industrial park: effect of environmental stress and nutrient deficiency on lipid production, Bioresour. Technol., 267 (2018) 657–665.
  7. X. Chen, Z. Li, N. He, Y. Zheng, H. Li, H. Wang, Y. Wang, Y. Lu, Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor, Biotechnol. Biofuels, 190 (2018) 1–11, doi: 10.1186/s13068-018-1190-0.
  8. J.L. Salgueiro, L. Perez, R. Maceiras, A. Sànchez, A. Cancela, Semicontinuous culture of Chlorella vulgaris microalgae for wastewater treatment, Int. J. Environ. Res., 12 (2018) 765–772.
  9. A. Hernández-García, S.B. Velásquez-Orta, E. Novelo, I. Yáñez-Noguez, I. Monje-Ramírez, M.T. Orta, Wastewater-leachate treatment by microalgae: biomass, carbohydrate and lipid production, Ecotoxicol. Environ. Saf., 174 (2019) 435–444.
  10. M.T. Nguyen, C. Lin, C. Lay, Microalgae cultivation using biogas and digestate carbon sources, Biomass Bioenergy, 122 (2019) 426–432.
  11. M. Tossavainen, K. Lahti, M. Edelmann, R. Eskola, A. Lampi, Integrated utilization of microalgae cultured in aquaculture wastewater: wastewater treatment and production of valuable fatty acids and tocopherols, J. Appl. Phycol., 31 (2018) 1753–1763.
  12. J. Fito, K. Alemu, Microalgae – bacteria consortium treatment technology for municipal wastewater management, Nanotechnol. Environ. Eng., 2 (2019) 1–9.
  13. H. Fan, K. Wang, C. Wang, F. Yu, X. He, J. Ma, X. Li, A comparative study on growth characters and nutrients removal from wastewater by two microalgae under optimized light regimes, Environ. Technol. Innov., 19 (2020) 100849, doi: 10.1016/j.eti.2020.100849.
  14. O. Spain, M. Plöhn, C. Funk, The cell wall of green microalgae and its role in heavy metal removal, Physiol. Plant., 173 (2021) 526–535.
  15. Z.S. Birungi, E.M.N. Chirwa, Bioremediation of toxic metals and recovery of target metals from actual wastewater using algal sorbents, Ital. Assoc. Chem. Eng., 64 (2018) 535–540.
  16. R.M. Moghazy, Activated biomass of the green microalga Chlamydomonas variabilis as an efficient biosorbent to remove methylene blue dye from aqueous solutions, Water SA, 45 (2019) 20–28.
  17. A. Lúcia, E. Carissimi, G.L. Dotto, L.A. Feris, Biosorption of Rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa, J. Cleaner Prod., 198 (2018) 1302–1310.
  18. J.Y. Chin, L.M. Chng, S.S. Leong, S.P. Yeap, N.H.M. Yasin, P.Y. Toh, Removal of synthetic dye by Chlorella vulgaris microalgae as natural adsorbent, Arabian J. Sci. Eng., 45 (2020) 7385–7395.
  19. L. Delgadillo-Mirquez, F. Lopes, B. Taidi, D. Pareau, Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture, Biotechnol. Rep., 11 (2016) 18–26.
  20. B. Molinuevo-salces, B. Riaño, D. Hernández, Microalgae and Wastewater Treatment: Advantages and Disadvantages, M. Alam, Z. Wang, Eds., Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, 2019, pp. 505–533. doi: 10.1007/978-981-13-2264-8_20
  21. S. Abinandan, S. Shanthakumar, Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review, Renewable Sustainable Energy Rev., 52 (2015) 123–132.
  22. F.G. Acién, Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment?, Appl. Microbiol. Biotechnol., 100 (2016) 9013–9022.
  23. S.K. Gupta, K. Dhandayuthapani, F.A. Ansari, Chapter 19 – Techno-Economic Perspectives of Bioremediation of Wastewater, Dewatering, and Biofuel Production From Microalgae: An overview, V.C. Pandey, K. Bauddh, Eds., Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation, Elsevier Inc., Amsterdam, 2019, pp. 471–499. doi: 10.1016/B978-0-12-813912-7.00019-3.
  24. N. Malik, Biotechnological potential of immobilised algae for wastewater N, P and metal removal: a review, BioMetals, 15 (2002) 377–390.
  25. Y. Su, A. Mennerich, B. Urban, Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture, Water Res., 5 (2011) 2–9.
  26. G.K. Sharma, S.A. Khan, M. Shrivastava, R. Bhattacharyya, A. Sharma, D.K. Gupta, P. Kishore, N. Gupta, Circular economy fertilization: phycoremediated algal biomass as biofertilizers for sustainable crop production, J. Environ. Manage., 287 (2021) 112295, doi: 10.1016/j.jenvman.2021.112295.
  27. A.S.A. de P. Pereira, J. de S. Castro, V.J. Ribeiro, M.L. Calijuri, Organomineral fertilizers pastilles from microalgae grown in wastewater: ammonia volatilization and plant growth, Sci. Total Environ., 779 (2021) 146205, doi: 10.1016/j.scitotenv.2021.146205.
  28. A. Aslam, A. Bahadar, R. Liaquat, M. Saleem, A. Waqas, M. Zwawi, Algae as an attractive source for cosmetics to counter environmental stress, Sci. Total Environ., 772 (2021) 144905, doi: 10.1016/j.scitotenv.2020.144905.
  29. J. Liu, I. Obaidi, S. Nagar, G. Scalabrino, H. Sheridan, The antiviral potential of algal-derived macromolecules, Curr. Res. Biotechnol., 3 (2021) 120–134.
  30. S.V. Vassilev, C.G. Vassileva, Composition, properties and challenges of algae biomass for biofuel application: an overview, Fuel, 181 (2016) 1–33.
  31. K.R. Hakeem, M. Jawaid, U. Rashid, Eds., Biomass and Bioenergy: Processing and Properties, Springer, Cham, 2014, pp. 307–326, doi: 10.1007/978-3-319-07641-6.
  32. K. Chojnacka, K. Moustakas, A. Witek-Krowiak, Bio-based fertilizers: a practical approach towards circular economy, Bioresour. Technol., 295 (2020) 122223, doi: 10.1016/j.biortech.2019.122223.
  33. R. Tripathi, A. Gupta, I.S. Thakur, An integrated approach for phycoremediation of wastewater and sustainable biodiesel production by green microalgae, Scenedesmus sp. ISTGA1, Renewable Energy, 135 (2019) 617–625.
  34. K. Katam, D. Bhattacharyya, Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge, J. Ind. Eng. Chem., 69 (2019) 295–303.
  35. F. Gao, Z. Yang, Q. Zhao, D. Chen, C. Li, M. Liu, J. Yang, J. Liu, Y. Ge, Mixotrophic cultivation of microalgae coupled with anaerobic hydrolysis for sustainable treatment of municipal wastewater in a hybrid system of anaerobic membrane bioreactor and membrane photobioreactor, Bioresour. Technol., 337 (2021) 125457, doi: 10.1016/j.biortech.2021.125457.
  36. W. Kong, J. Kong, H. Lyu, P. Yuan, Z. Wang, B. Shen, S. Feng, Integrating municipal wastewater treatment with CO2 fixation and fatty acid production by cultivating Tetradesmus obliquus, J. Cleaner Prod., 320 (2021) 128916, doi: 10.1016/j.jclepro.2021.128916.
  37. E. Amini, A. Babaei, M. Reza, J. Shayegan, Municipal wastewater treatment by semi-continuous and membrane algal-bacterial photo-bioreactors, J. Water Process. Eng., 36 (2020) 101274, doi: 10.1016/j.jwpe.2020.101274.
  38. H. Beydeş, I. Karapinar, Algal nutrient removal from wastewater in fed-batch operated photobioreactor, Int. J. Environ. Res., 12 (2018) 303–311.
  39. W. Lu, Z. Wang, X. Wang, Z. Yuan, Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures, Bioresour. Technol., 192 (2015) 382–388.
  40. S. Cho, T. Thao, D. Lee, Y. Oh, T. Lee, Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production, Bioresour. Technol., 102 (2011) 8639–8645.
  41. R. Chen, R. Li, L. Deitz, Y. Liu, R.J. Stevenson, W. Liao, Freshwater algal cultivation with animal waste for nutrient removal and biomass production, Biomass Bioenergy, 39 (2012) 128–138.
  42. M-K. Ji, R.A.I. Abou-Shanab, S.-H. Kim, E.-S. Salama, S.-H. Lee, A.N. Kabra, Y.-S. Lee, S. Hong, B.-H. Jeon, Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production, Ecol. Eng., 58 (2013) 142–148.
  43. G. Markou, D. Vandamme, K. Muylaert, Microalgal and cyanobacterial cultivation: the supply of nutrients, Water Res., 65 (2014) 186–202.
  44. E. Posadas, A. Soltau, I. Díaz, R. Muñoz, Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors, Bioresour. Technol., 139 (2013) 50–58.
  45. F.Z. Mennaa, Z. Arbib, J.A. Perales, Urban wastewater treatment by seven species of microalgae and an algal bloom: biomass production, N and P removal kinetics and harvestability, Water Res., 83 (2015) 42–51.
  46. L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, R. Ruan, Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant, Appl. Biochem. Biotechnol., 162 (2010) 1174–1186.
  47. P. Feng, Z. Deng, Z. Hu, L. Fan, Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors, Bioresour. Technol., 102 (2011) 10577–10584.
  48. A. Ramos, S. Regan, P.J. McGinn, P. Champagne, Feasibility of a microalgal wastewater treatment for the removal of nutrients under non sterile conditions and carbon limitation, Can. J. Chem. Eng., 97 (2018) 1289–1298.
  49. Y. Li, Y. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, R. Ruan, Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production, Bioresour. Technol., 102 (2011) 5138–5144.
  50. J. Liu, Y. Wu, C. Wu, K. Muylaert, W. Vyverman, H.Q. Yu, R. Muñoz, B. Rittmann, Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review, Bioresour. Technol., 241 (2017) 1127–1137.
  51. R. Amiri, M. Ahmadi, Treatment of wastewater in sewer by Spirogyra sp. green algae: effects of light and carbon sources, Water Environ. J., 34 (2014) 311–321.
  52. Y. Zhao, Z. Ge, H. Lui, S. Sun, Ability of different microalgae species in synthetic high-strength wastewater treatment and potential lipid production, J. Chem. Technol. Biotechnol., 91 (2016) 2888–2895.
  53. S. Zhu, L. Qin, P. Feng, C. Shang, Z. Wang, Z. Yuan, Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor, Bioresour. Technol., 274 (2018) 313–320.
  54. K. Lee, C. Lee, Effect of light/dark cycles on wastewater treatments by microalgae cell growth under different light conditions, Biotechnol. Bioprocess Eng., 6 (2001) 194–199.
  55. N. Nirmalakhandan, T. Selvaratnam, D. Tchinda, I.S.A. Abeysiriwardana-Arachchige, H.M.K. Delanka-Pedige, S.P. Munasinghe-Arachchige, Algal wastewater treatment: photoautotrophic vs . mixotrophic processes, Algal Res., 41 (2019) 101569, doi: 10.1016/j.algal.2019.101569.
  56. I. De. Godos, H.O. Guzman, R. Soto, P.A. García-encina, E. Becares, R. Muñoz, V.A. Vargas, Coagulation/flocculationbased removal of algal – bacterial biomass from piggery wastewater treatment, Bioresour. Technol., 102 (2011) 923–927.
  57. D.M. Mahapatra, H.N. Chanakya, Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment, J. Appl. Phycol., 25 (2013) 855–865.