References

  1. I. Michael, L. Rizzo, C. McArdell, C. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res., 47 (2013) 957–995.
  2. W.C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, Environ. Pollut., 187 (2014) 193–201.
  3. K. Kümmerer, Antibiotics in the aquatic environment – a review – Part I, Chemosphere, 75 (2009) 417–434.
  4. P. Gao, M. Munir, I. Xagoraraki, Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant, Sci. Total Environ., 421 (2012) 173–183.
  5. M.A. Mitchell, Enrofloxacin, J. Exot. Pet. Med., 15 (2006) 66–69.
  6. M. Andrieu, A. Rico, T.M. Phu, D.T.T. Huong, N.T. Phuong, P.J. Van den Brink, Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta, Vietnam, Chemosphere, 119 (2015) 407–414.
  7. J. Gibs, H.A. Heckathorn, M.T. Meyer, F.R. Klapinski, M. Alebus, R.L. Lippincott, Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008, Sci. Total Environ., 458 (2013) 107–116.
  8. A. Watkinson, E. Murby, D.W. Kolpin, S. Costanzo, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, Sci. Total Environ., 407 (2009) 2711–2723.
  9. Y. Li, R. Jindal, K. Choi, Y.L. Kho, P.G. de Bullen, Pharmaceutical residues in wastewater treatment plants and surface waters in Bangkok, J. Hazard. Toxic Radioact. Waste, 16 (2012) 88–91.
  10. J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind, D.J. Larsson, Contamination of surface, ground, and drinking water from pharmaceutical production, Environ. Toxicol. Chem., 28 (2009) 2522–2527.
  11. D.G.J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard. Mater., 148 (2007) 751–755.
  12. R. Wei, F. Ge, M. Chen, R. Wang, Occurrence of ciprofloxacin, enrofloxacin, and florfenicol in animal wastewater and water resources, J. Environ. Qual., 41 (2012) 1481–1486.
  13. M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E.A. Irastorza, E. Fasani, A. Albini, Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight, Appl. Catal., B, 119 (2012) 32–39.
  14. W. Yan, J. Zhang, C. Jing, Enrofloxacin transformation on Shewanella oneidensis MR-1 reduced goethite during anaerobic–aerobic transition, Environ. Sci. Technol., 50 (2016) 11034–11040.
  15. X.-x. Zhang, Y.-g. Xiao, S.-s. Cao, Z.-l. Yin, Z.-Q. Liu, Ternary TiO2@Bi2O3@TiO2 hollow photocatalyst drives robust visible-light photocatalytic performance and excellent recyclability, J. Cleaner Prod., 352 (2022) 131560, doi: 10.1016/j.jclepro.2022.131560.
  16. A.L. Giraldo, G.A. Penuela, R.A. Torres-Palma, N.J. Pino, R.A. Palominos, H.D. Mansilla, Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension, Water Res., 44 (2010) 5158–5167.
  17. X. Hu, X. Hu, Q. Peng, L. Zhou, X. Tan, L. Jiang, C. Tang, H. Wang, S. Liu, Y. Wang, Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2, Chem. Eng. J., 380 (2020) 122366, doi: 10.1016/j.cej.2019.122366.
  18. N.T.C. Tien, C.H. Nhut, V.T.T. Thuy, T.T.B. Huyen, L.P.T. Hien, N.N. Huy, Enhancement in photocatalytic efficiency of commercial TiO2 nanoparticles by calcination: a case of doxycycline removal, Bull. Chem. React. Eng. Catal., 17 (2022) 486–496.
  19. X. Chen S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891–2959.
  20. M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen, Y. Yin, Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity, Chem. Eur. J., 16 (2010) 6243–6250.
  21. A.A. Babaei, M. Golshan, B. Kakavandi, A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon, Process Saf. Environ. Prot., 149 (2021) 35–47.
  22. S. Moradi, S.A. Sobhgol, F. Hayati, A.A. Isari, B. Kakavandi, P. Bashardoust, B. Anvaripour, Performance and reaction mechanism of MgO/ZnO/graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater, Sep. Purif. Technol., 251 (2020) 117373, doi: 10.1016/j.seppur.2020.117373.
  23. O.F.S. Khasawneh, P. Palaniandy, Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: a review, Environ. Technol. Innovation, 21 (2021) 101230, doi: 10.1016/j.eti.2020.101230.
  24. V.E. Noval, J.G. Carriazo, Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles, Mater. Res., 22 (2019) e20180660, doi: 10.1590/1980-5373-MR-2018-0660.
  25. Q. He, Z. Zhang, J. Xiong, Y. Xiong, H. Xiao, A novel biomaterial—Fe3O4: TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity, Opt. Mater., 31 (2008) 380–384.
  26. Y. Yu, L. Yan, J. Cheng, C. Jing, Mechanistic insights into TiO2 thickness in Fe3O4@TiO2-GO composites for enrofloxacin photodegradation, Chem. Eng. J., 325 (2017) 647–654.
  27. D.H. Dau, L.V. Ngoan, L.M. Tung, T.H. Hai, Synthesizing super paramagnetic nanoparticle Fe3O4 and crusting procedure, Can Tho Univ. J. Sci., 19a (2011) 38–46.
  28. L.-l. Pei, W.-z. Yang, J.-y. Fu, M.-x. Liu, T.-t. Zhang, D.-b. Li, R.-y. Huang, L. Zhang, G.-n. Peng, G. Shu, Synthesis, characterization, and pharmacodynamics study of enrofloxacin mesylate, Drug Des. Dev. Ther., 14 (2020) 715–730.
  29. H.-t. Zhang, J.-q. Jiang, Z.-l. Wang, X.-y. Chang, X.-y. Liu, S.-h. Wang, K. Zhao, J.-s. Chen, Development of an indirect competitive ELISA for simultaneous detection of enrofloxacin and ciprofloxacin, J. Zhejiang Univ. Sci. B, 12 (2011) 884–891.
  30. P. Huang, J. Luan, Structure and photocatalytic performance of rice husk-like Ba-doped GaOOH under light irradiation, RSC Adv., 9 (2019) 19930–19939.
  31. M. Malakootian, A. Nasiri, M. Amiri Gharaghani, Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate, Chem. Eng. Commun., 207 (2020) 56–72.
  32. S. Tumanski, Handbook of Magnetic Measurements, CRC Press, Boca Raton, Florida, 2011.
  33. N.V. Chukanov, A.D. Chervonnyi, Infrared Spectroscopy of Minerals and Related Compounds, Springer International Publishing, Cham, 2016, pp. 1–49.
  34. S. Salamat, H. Younesi, N. Bahramifar, Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater, RSC Adv., 7 (2017) 19391–19405.
  35. S. Mamedov, Characterization of TiO2 nanopowders by Raman spectroscopy, Raman Technol. Today’s Spectroscopists, 35 (2020) 41–49.
  36. S.S. Al-Taweel, H.R. Saud, New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol–gel method, J. Chem. Pharm. Res., 8 (2016) 620–626.
  37. P. Kumar, H. No-Lee, R. Kumar, Synthesis of phase pure iron oxide polymorphs thin films and their enhanced magnetic properties, J. Mater. Sci.: Mater. Electron., 25 (2014) 4553–4561.
  38. C.P. Bergmann, P.C. Panta, Raman spectroscopy of iron oxide of nanoparticles (Fe3O4), J. Mater. Sci. Eng., 5 (2015) 146, doi: 10.4172/2169-0022.1000217.
  39. W. Li, C. Guo, B. Su, J. Xu, Photodegradation of four fluoroquinolone compounds by titanium dioxide under simulated solar light irradiation, J. Chem. Technol. Biotechnol., 87 (2012) 643–650.
  40. W. Yan, S. Hu, C. Jing, Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid, J. Colloid Interface Sci., 372 (2012) 141–147.
  41. S. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
  42. N. San, M. Kılıç, Z. Tuiebakhova, Z. Çınar, Enhancement and modeling of the photocatalytic degradation of benzoic acid, J. Adv. Oxid. Technol., 10 (2007) 43–50.
  43. C.M. So, M.Y. Cheng, J.C. Yu, P.K. Wong, Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation, Chemosphere, 46 (2002) 905–912.
  44. S. Moradi, A.A. Isari, F. Hayati, R. Rezaei Kalantary, B. Kakavandi, Co-implanting of TiO2 and liquid-phase-delaminated g-C3N4 on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen, Chem. Eng. J., 414 (2021) 128618, doi: 10.1016/j.cej.2021.128618.
  45. Y. Xue, P. Wang, C. Wang, Y. Ao, Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: environmental factors, mechanisms and degradation pathways, Chemosphere, 203 (2018) 497–505.
  46. C. Wang, Y. Xue, P. Wang, Y. Ao, Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation, J. Alloys Compd., 748 (2018) 314–322.