References
- I. Michael, L. Rizzo, C. McArdell, C. Manaia, C. Merlin,
T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater
treatment plants as hotspots for the release of antibiotics in the
environment: a review, Water Res., 47 (2013) 957–995.
- W.C. Li, Occurrence, sources, and fate of pharmaceuticals
in aquatic environment and soil, Environ. Pollut., 187 (2014)
193–201.
- K. Kümmerer, Antibiotics in the aquatic environment – a review
– Part I, Chemosphere, 75 (2009) 417–434.
- P. Gao, M. Munir, I. Xagoraraki, Correlation of tetracycline and
sulfonamide antibiotics with corresponding resistance genes
and resistant bacteria in a conventional municipal wastewater
treatment plant, Sci. Total Environ., 421 (2012) 173–183.
- M.A. Mitchell, Enrofloxacin, J. Exot. Pet. Med., 15 (2006) 66–69.
- M. Andrieu, A. Rico, T.M. Phu, D.T.T. Huong, N.T. Phuong,
P.J. Van den Brink, Ecological risk assessment of the antibiotic
enrofloxacin applied to Pangasius catfish farms in the Mekong
Delta, Vietnam, Chemosphere, 119 (2015) 407–414.
- J. Gibs, H.A. Heckathorn, M.T. Meyer, F.R. Klapinski, M. Alebus,
R.L. Lippincott, Occurrence and partitioning of antibiotic
compounds found in the water column and bottom sediments
from a stream receiving two wastewater treatment plant
effluents in Northern New Jersey, 2008, Sci. Total Environ.,
458 (2013) 107–116.
- A. Watkinson, E. Murby, D.W. Kolpin, S. Costanzo, The
occurrence of antibiotics in an urban watershed: from
wastewater to drinking water, Sci. Total Environ., 407 (2009)
2711–2723.
- Y. Li, R. Jindal, K. Choi, Y.L. Kho, P.G. de Bullen, Pharmaceutical
residues in wastewater treatment plants and surface waters in
Bangkok, J. Hazard. Toxic Radioact. Waste, 16 (2012) 88–91.
- J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind,
D.J. Larsson, Contamination of surface, ground, and drinking
water from pharmaceutical production, Environ. Toxicol.
Chem., 28 (2009) 2522–2527.
- D.G.J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures
contains extremely high levels of pharmaceuticals,
J. Hazard. Mater., 148 (2007) 751–755.
- R. Wei, F. Ge, M. Chen, R. Wang, Occurrence of ciprofloxacin,
enrofloxacin, and florfenicol in animal wastewater and water
resources, J. Environ. Qual., 41 (2012) 1481–1486.
- M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali,
E.A. Irastorza, E. Fasani, A. Albini, Photolytic and photocatalytic
degradation of fluoroquinolones in untreated river water
under natural sunlight, Appl. Catal., B, 119 (2012) 32–39.
- W. Yan, J. Zhang, C. Jing, Enrofloxacin transformation on
Shewanella oneidensis MR-1 reduced goethite during anaerobic–aerobic transition, Environ. Sci. Technol., 50 (2016) 11034–11040.
- X.-x. Zhang, Y.-g. Xiao, S.-s. Cao, Z.-l. Yin, Z.-Q. Liu, Ternary
TiO2@Bi2O3@TiO2 hollow photocatalyst drives robust
visible-light photocatalytic performance and excellent
recyclability, J. Cleaner Prod., 352 (2022) 131560, doi: 10.1016/j.jclepro.2022.131560.
- A.L. Giraldo, G.A. Penuela, R.A. Torres-Palma, N.J. Pino,
R.A. Palominos, H.D. Mansilla, Degradation of the antibiotic
oxolinic acid by photocatalysis with TiO2 in suspension,
Water Res., 44 (2010) 5158–5167.
- X. Hu, X. Hu, Q. Peng, L. Zhou, X. Tan, L. Jiang, C. Tang,
H. Wang, S. Liu, Y. Wang, Mechanisms underlying the
photocatalytic degradation pathway of ciprofloxacin with
heterogeneous TiO2, Chem. Eng. J., 380 (2020) 122366,
doi: 10.1016/j.cej.2019.122366.
- N.T.C. Tien, C.H. Nhut, V.T.T. Thuy, T.T.B. Huyen,
L.P.T. Hien, N.N. Huy, Enhancement in photocatalytic efficiency
of commercial TiO2 nanoparticles by calcination: a case of
doxycycline removal, Bull. Chem. React. Eng. Catal., 17 (2022)
486–496.
- X. Chen S.S. Mao, Titanium dioxide nanomaterials: synthesis,
properties, modifications, and applications, Chem. Rev.,
107 (2007) 2891–2959.
- M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen, Y. Yin,
Magnetically recoverable core–shell nanocomposites with
enhanced photocatalytic activity, Chem. Eur. J., 16 (2010)
6243–6250.
- A.A. Babaei, M. Golshan, B. Kakavandi, A heterogeneous
photocatalytic sulfate radical-based oxidation process for
efficient degradation of 4-chlorophenol using TiO2 anchored on
Fe oxides@carbon, Process Saf. Environ. Prot., 149 (2021) 35–47.
- S. Moradi, S.A. Sobhgol, F. Hayati, A.A. Isari, B. Kakavandi,
P. Bashardoust, B. Anvaripour, Performance and reaction
mechanism of MgO/ZnO/graphene ternary nanocomposite in
coupling with LED and ultrasound waves for the degradation
of sulfamethoxazole and pharmaceutical wastewater,
Sep. Purif. Technol., 251 (2020) 117373, doi: 10.1016/j.seppur.2020.117373.
- O.F.S. Khasawneh, P. Palaniandy, Removal of organic pollutants
from water by Fe2O3/TiO2 based photocatalytic degradation:
a review, Environ. Technol. Innovation, 21 (2021) 101230,
doi: 10.1016/j.eti.2020.101230.
- V.E. Noval, J.G. Carriazo, Fe3O4-TiO2 and Fe3O4-SiO2 core-shell
powders synthesized from industrially processed magnetite
(Fe3O4) microparticles, Mater. Res., 22 (2019) e20180660,
doi: 10.1590/1980-5373-MR-2018-0660.
- Q. He, Z. Zhang, J. Xiong, Y. Xiong, H. Xiao, A novel
biomaterial—Fe3O4: TiO2 core-shell nano particle with magnetic
performance and high visible light photocatalytic activity,
Opt. Mater., 31 (2008) 380–384.
- Y. Yu, L. Yan, J. Cheng, C. Jing, Mechanistic insights into TiO2
thickness in Fe3O4@TiO2-GO composites for enrofloxacin
photodegradation, Chem. Eng. J., 325 (2017) 647–654.
- D.H. Dau, L.V. Ngoan, L.M. Tung, T.H. Hai, Synthesizing super
paramagnetic nanoparticle Fe3O4 and crusting procedure,
Can Tho Univ. J. Sci., 19a (2011) 38–46.
- L.-l. Pei, W.-z. Yang, J.-y. Fu, M.-x. Liu, T.-t. Zhang, D.-b. Li, R.-y.
Huang, L. Zhang, G.-n. Peng, G. Shu, Synthesis, characterization,
and pharmacodynamics study of enrofloxacin mesylate,
Drug Des. Dev. Ther., 14 (2020) 715–730.
- H.-t. Zhang, J.-q. Jiang, Z.-l. Wang, X.-y. Chang, X.-y. Liu,
S.-h. Wang, K. Zhao, J.-s. Chen, Development of an indirect
competitive ELISA for simultaneous detection of enrofloxacin
and ciprofloxacin, J. Zhejiang Univ. Sci. B, 12 (2011) 884–891.
- P. Huang, J. Luan, Structure and photocatalytic performance
of rice husk-like Ba-doped GaOOH under light irradiation,
RSC Adv., 9 (2019) 19930–19939.
- M. Malakootian, A. Nasiri, M. Amiri Gharaghani, Photocatalytic
degradation of ciprofloxacin antibiotic by TiO2 nanoparticles
immobilized on a glass plate, Chem. Eng. Commun., 207 (2020)
56–72.
- S. Tumanski, Handbook of Magnetic Measurements, CRC
Press, Boca Raton, Florida, 2011.
- N.V. Chukanov, A.D. Chervonnyi, Infrared Spectroscopy of
Minerals and Related Compounds, Springer International
Publishing, Cham, 2016, pp. 1–49.
- S. Salamat, H. Younesi, N. Bahramifar, Synthesis of magnetic
core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace
dust for photocatalytic degradation of steel mill wastewater,
RSC Adv., 7 (2017) 19391–19405.
- S. Mamedov, Characterization of TiO2 nanopowders by
Raman spectroscopy, Raman Technol. Today’s Spectroscopists,
35 (2020) 41–49.
- S.S. Al-Taweel, H.R. Saud, New route for synthesis of pure
anatase TiO2 nanoparticles via utrasound-assisted sol–gel
method, J. Chem. Pharm. Res., 8 (2016) 620–626.
- P. Kumar, H. No-Lee, R. Kumar, Synthesis of phase pure iron
oxide polymorphs thin films and their enhanced magnetic
properties, J. Mater. Sci.: Mater. Electron., 25 (2014) 4553–4561.
- C.P. Bergmann, P.C. Panta, Raman spectroscopy of iron oxide
of nanoparticles (Fe3O4), J. Mater. Sci. Eng., 5 (2015) 146,
doi: 10.4172/2169-0022.1000217.
- W. Li, C. Guo, B. Su, J. Xu, Photodegradation of four
fluoroquinolone compounds by titanium dioxide under
simulated solar light irradiation, J. Chem. Technol. Biotechnol.,
87 (2012) 643–650.
- W. Yan, S. Hu, C. Jing, Enrofloxacin sorption on smectite clays:
effects of pH, cations, and humic acid, J. Colloid Interface Sci.,
372 (2012) 141–147.
- S. Kansal, M. Singh, D. Sud, Studies on photodegradation
of two commercial dyes in aqueous phase using different
photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
- N. San, M. Kılıç, Z. Tuiebakhova, Z. Çınar, Enhancement and
modeling of the photocatalytic degradation of benzoic acid,
J. Adv. Oxid. Technol., 10 (2007) 43–50.
- C.M. So, M.Y. Cheng, J.C. Yu, P.K. Wong, Degradation of azo dye
Procion Red MX-5B by photocatalytic oxidation, Chemosphere,
46 (2002) 905–912.
- S. Moradi, A.A. Isari, F. Hayati, R. Rezaei Kalantary, B. Kakavandi,
Co-implanting of TiO2 and liquid-phase-delaminated
g-C3N4 on multi-functional graphene nanobridges for enhancing
photocatalytic degradation of acetaminophen, Chem. Eng. J.,
414 (2021) 128618, doi: 10.1016/j.cej.2021.128618.
- Y. Xue, P. Wang, C. Wang, Y. Ao, Efficient degradation of
atrazine by BiOBr/UiO-66 composite photocatalyst under
visible light irradiation: environmental factors, mechanisms
and degradation pathways, Chemosphere, 203 (2018) 497–505.
- C. Wang, Y. Xue, P. Wang, Y. Ao, Effects of water environmental
factors on the photocatalytic degradation of sulfamethoxazole
by AgI/UiO-66 composite under visible light irradiation,
J. Alloys Compd., 748 (2018) 314–322.