References

  1. T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities, Environ. Technol. Innovation, 20 (2020) 101067, doi: 10.1016/j.eti.2020.101067.
  2. S.Y. Lee, H.J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manage., 209 (2018) 382–392.
  3. WHO, Inorganic Lead, International Programme on Chemical Safety (Environmental Health Criteria 165), World Health Organization, Geneva, 1995. Available at http://www.inchem.org/documents/ehc/ehc/ehc165.htm
  4. WHO, Exposure to Lead: A Major Public Health Concern, 2nd ed., Preventing Disease Through Healthy Environments, World Health Organization, Geneva, Switzerland, 2021.
  5. Y. Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, S. Yang, Y. Sun, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Y. Chen, X. Zhang, F. Gao, Y. Zhang, Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review, Chemosphere, 211 (2018) 235–253.
  6. A.K. Thakur, R. Singh, R.T. Pullela, V. Pundir, Green adsorbents for the removal of heavy metals from wastewater: a review, Mater. Today: Proc., 57 (2022) 1468–1472.
  7. T.A. Saleh, M. Mustaqeem, M. Khaled, Water treatment technologies in removing heavy metal ions from wastewater: a review, Environ. Nanotechnol. Monit. Manage., 17 (2022) 100617, doi: 10.1016/j.enmm.2021.100617.
  8. S.A. Razzak, M.O. Faruque, Z. Alsheikh, L. Alsheikhmohamad, D. Alkuroud, A. Alfayez, S.M. Zakir Hossain, M.M. Hossain, A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater, Environ. Adv., 7 (2022) 100168, doi: 10.1016/j.envadv.2022.100168.
  9. H.-J. Choi, Assessment of sulfonation in lignocellulosic derived material for adsorption of methylene blue, Environ. Eng. Res., 27 (2022) 210034, doi: 10.4491/eer.2021.034.
  10. H.-J. Choi, Surface modification of sulfuric acid-activated lignocellulose-based material for recovery of Ca, K, Mg, and Na from seawater, Desal. Water Treat., 233 (2021) 118–132.
  11. G. Nacu, D. Bulgariu, M.C. Popescu, M. Harja, D.T. Juravle, L. Bulgariu, Removal of Zn(II) ions from aqueous media on thermal activated sawdust, Desal. Water Treat., 57 (2016) 21904–21915.
  12. K. Roa, E. Oyarce, A. Boulett, M. ALSamman, D. Oyarzún, G. del C. Pizarro, J. Sanchez, Lignocellulose-based materials and their application in the removal of dyes from water: a review, Sustainable Mater. Technol., 29 (2021) e00320, doi: 10.1016/j.susmat.2021.e00320.
  13. H.J. Choi, Assessment of the adsorption kinetics, equilibrium, and thermodynamic for Pb(II) removal using a low‐cost hybrid biowaste adsorbent, eggshell/coffee ground/sericite, Water Environ. Res., 91 (2019) 1600–1612.
  14. S.S. Choi, T.R. Choi, H.J. Choi, Surface Modification of phosphoric acid–activated carbon in spent coffee grounds to enhance Cu(II) adsorption from aqueous solutions, Appl. Chem. Eng., 32 (2021) 589–598.
  15. C.O. Thompson, A.O. Ndukwe, C.O. Asadu, Application of activated biomass waste as an adsorbent for the removal of lead(II) ion from wastewater, Emerging Contam., 6 (2020) 259–267.
  16. E. Pagalan Jr., M. Sebron, S. Gomez, S.J. Salva, R. Ampusta, A.J. Macarayo, C. Joyno, A. Ido, R. Arazo, Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye, Ind. Crops Prod., 145 (2020) 111953, doi: 10.1016/j.indcrop.2019.111953.
  17. N.V. Sych, S.I. Trofymenko, O.I. Poddubnaya, M.M. Tsyba, V.I. Sapsay, D.O. Klymchuk, A.M. Puziy, Porous structure and surface chemistry of phosphoric acid activated carbon from corncob, Appl. Surf. Sci., 261 (2012) 75–82.
  18. Q.S. Liu, T. Zheng, P. Wang, L. Guo, Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation, Ind. Crops Prod., 31 (2010) 233–238.
  19. T.A. Saleh, Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon, J. Cleaner Prod., 172 (2018) 2123–2132.
  20. W.l. Xiong, J. Zhang, J.X. Yu, R.A. Chi, Competitive adsorption behavior and mechanism for Pb2+ selective removal from aqueous solution on phosphoric acid modified sugarcane bagasse fixed-bed column, Process Saf. Environ. Prot., 124 (2019) 75–83.
  21. H. Zhuang, Y. Zhong, L. Yang, Adsorption equilibrium and kinetics studies of divalent manganese from phosphoric acid solution by using cationic exchange resin, Chin. J. Chem. Eng., 28 (2020) 2758–2770.
  22. N. Zhou, H. Chen, Q. Feng, D. Yao, H. Chen, H. Wang, Z. Zhou, H. Li, Y. Tian, X. Lu, Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels, J. Cleaner Prod., 165 (2017) 221–230.
  23. A. Shahat, Md.R. Awual, Md.A. Khaleque, Md.Z. Alam, Mu. Naushad, A.M. Sarwaruddin Chowdhury, Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media, Chem. Eng. J., 273 (2015) 286–295.
  24. H.J. Choi, Efficient adsorption of lead from aqueous solution by phosphoric acid activated corn stalk, KSWST J. Water Treat., 29 (2021) 3–12.
  25. H.J. Choi, Assessment of the adsorption kinetics, equilibrium, and thermodynamic for Pb(II) removal using a low-cost hybrid biowaste adsorbent, eggshell/coffee ground/sericite, Water Environ. Res., 91 (2019) 1600–1612.
  26. H.J. Choi, S.W. Yu, Application of novel hybrid bioadsorbent, tannin/chitosan/sericite, for the removal of Pb(II) toxic ion from aqueous solution, Korean J. Chem. Eng., 35 (2018) 2198–2206.
  27. Q. Jiang, W. Xie, S. Han, Y. Wang, Y. Zhang, Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H3PO4: an analysis of surface property and interface mechanism, Colloids Surf., A, 583 (2019) 123962, doi: 10.1016/j. colsurfa.2019.123962.
  28. H.J. Choi, Assessment of the adsorption kinetics, equilibrium and thermodynamic for Pb(II) removal using a hybrid adsorbent, eggshell and sericite, in aqueous solution, Water Sci. Technol., 79 (2019) 1922–1933.
  29. G.E.S. El-Deen, S.E.A.S. El-Deen, Kinetic and isotherm studies for adsorption of Pb(II) from aqueous solution onto coconut shell activated carbon, Desal. Water Treat., 57 (2016) 28910–28931.
  30. H. Demiral, E. Baykul, M.D. Gezer, S. Erkoç, A. Engin, M.C. Baykul, Preparation and characterization of activated carbon from chestnut shell and its adsorption characteristics for lead, Sep. Sci. Technol., 49 (2014) 2711–2720.
  31. S. Basu, G. Ghosh, S. Saha, Adsorption characteristics of phosphoric acid induced activation of bio-carbon: equilibrium, kinetics, thermodynamics and batch adsorber design, Process Saf. Environ. Prot., 117 (2018) 125–142.
  32. M.Zh. Kussainova, R.M. Chernyakovа, U.Z. Jussipbekov, S. Pasa, Structural investigation of raw clinoptilolite over the Pb2+ adsorption process from phosphoric acid, J. Mol. Struct., 1184 (2019) 49–58.
  33. D.D. Giri, A. Alhazmi, A. Mohammad, S. Haque, N. Srivastava, V.K. Thakur, V.K. Gupta, D.B. Pal, Lead removal from synthetic wastewater by biosorbents prepared from seeds of Artocarpus heterophyllus and Syzygium cumini, Chemosphere, 287 (2022) 132016, doi: 10.1016/j.chemosphere.2021.132016.
  34. B.G. Althogbi, Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solution, Sustainable Chem. Pharm., 6 (2017) 21–25.
  35. D.H.K. Reddy, K. Seshaiah, A.V.R. Reddy, M.M. Rao, M.C. Wang, Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies, J. Hazard. Mater., 174 (2010) 831–838.
  36. H. Amer, A. El-Gendy, S. El-Haggar, Removal of lead(II) from aqueous solutions using rice straw, Water Sci. Technol., 76 (2017) 1011–1021.
  37. F. Ergüvenerler, Ş. Targan, V.N. Tirtom, Removal of lead from aqueous solutions by low cost and waste biosorbents (lemon, bean and artichoke shells), Water Sci. Technol., 81 (2020) 159–169.
  38. X. Meng, R. Hu, Nitrogen/phosphorus enriched biochar with enhanced porosity activated by guanidine phosphate for efficient passivation of Pb(II), Cu(II) and Cd(II), J. Mol. Liq., 323 (2021) 115071, doi: 10.1016/j.molliq.2020.115071.
  39. K.M. Dimpe, J.C. Ngila, P.N. Nomngongo, Application of waste tyre-based activated carbon for the removal of heavy metals in wastewater, Cogent Eng., 4 (2017) 1330912, doi: 10.1080/23311916.2017.1330912.
  40. S.W. Yu, H.J. Choi, Application of hybrid bead, persimmon leaf and chitosan for the treatment of aqueous solution contaminated with toxic heavy metal ions, Water Sci. Technol., 78 (2018) 837–847.
  41. R.V. Hemavathy, A. Saravanan, P. Senthil Kumar, D.-V.N. Vo, S. Karishma, S. Jeevanantham, Adsorptive removal of Pb(II) ions onto surface modified adsorbents derived from Cassia fistula seeds: optimization and modelling study, Chemosphere, 283 (2021) 131276, doi: 10.1016/j.chemosphere.2021.131276.