References

  1. F.E. Ahmed, A. Khalil, N. Hilal, Emerging desalination technologies: current status, challenges and future trends, Desalination, 517 (2021) 115183, doi: 10.1016/j.desal.2021.115183.
  2. S.-Y. Pan, A.Z. Haddad, A. Kumar, S.-W. Wang, Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus, Water Res., 183 (2020) 116064, doi: 10.1016/j.watres.2020.116064.
  3. J. Kim, K. Park, D.R. Yang, S. Hong, A comprehensive review of energy consumption of seawater reverse osmosis desalination plants, Appl. Energy, 254 (2019) 113652, doi: 10.1016/j.apenergy.2019.113652.
  4. N. Voutchkov, Desalination – Past, Present and Future, International Water Association, Export Building, First Floor, 1 Clove Crescent, London E14 2BA, United Kingdom, 2016.
    Available at https://iwa-network.org/desalination-past-present-future/
  5. H.C. Duong, A.J. Ansari, L.D. Nghiem, T.M. Pham, T.D. Pham, Low carbon desalination by innovative membrane materials and processes, Curr. Pollut. Rep., 4 (2018) 251–264.
  6. H.C. Duong, T.L. Tran, A.J. Ansari, H.T. Cao, T.D. Vu, K.U. Do, Advances in membrane materials and processes for desalination of brackish water, Curr. Pollut. Rep., 5 (2019) 319–336.
  7. S.-A. Schmidt, E. Gukelberger, M. Hermann, F. Fiedler, B. Großmann, J. Hoinkis, A. Ghosh, D. Chatterjee, J. Bundschuh, Pilot study on arsenic removal from groundwater using a smallscale reverse osmosis system—towards sustainable drinking water production, J. Hazard. Mater., 318 (2016) 671–678.
  8. A. Abejón, A. Garea, A. Irabien, Arsenic removal from drinking water by reverse osmosis: minimization of costs and energy consumption, Sep. Purif. Technol., 144 (2015) 46–53.
  9. P. Xu, M. Capito, T.Y. Cath, Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate, J. Hazard. Mater., 260 (2013) 885–891.
  10. H.C. Duong, L.T.T. Tran, M.T. Vu, D. Nguyen, N.T.V. Tran, L.D. Nghiem, A new perspective on small-scale treatment systems for arsenic affected groundwater, Environ. Technol. Innovation, 23 (2021) 101780, doi: 10.1016/j.eti.2021.101780.
  11. P.L. Smedley, D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17 (2002) 517–568.
  12. T.D. Dao, S. Laborie, C. Cabassud, Direct As(III) removal from brackish groundwater by vacuum membrane distillation: effect of organic matter and salts on membrane fouling, Sep. Purif. Technol., 157 (2016) 35–44.
  13. R. Singh, S. Singh, P. Parihar, V.P. Singh, S.M. Prasad, Arsenic contamination, consequences and remediation techniques: a review, Ecotoxicol. Environ. Saf., 112 (2015) 247–270.
  14. P. Sharan, T.J. Yoon, S.M. Jaffe, T. Ju, R.P. Currier, A.T. Findikoglu, Can capacitive deionization outperform reverse osmosis for brackish water desalination?, Cleaner Eng. Technol., 3 (2021) 100102, doi: 10.1016/j.clet.2021.100102.
  15. M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination:
    a state-of-the-art review, Desalination, 459 (2019) 59–104.
  16. B. Teychene, G. Collet, H. Gallard, J.-P. Croue, A comparative study of boron and arsenic(III) rejection from brackish water by reverse osmosis membranes, Desalination, 310 (2013) 109–114.
  17. M. Walker, R.L. Seiler, M. Meinert, Effectiveness of household reverse-osmosis systems in a Western U.S. region with high arsenic in groundwater, Sci. Total Environ., 389 (2008) 245–252.
  18. B.K.C. Chan, A.W.L. Dudeney, Reverse osmosis removal of arsenic residues from bioleaching of refractory gold concentrates, Miner. Eng., 21 (2008) 272–278.
  19. M.M. Gholami, M.A. Mokhtari, A. Aameri, M.R. Alizadeh Fard, Application of reverse osmosis technology for arsenic removal from drinking water, Desalination, 200 (2006) 725–727.
  20. M. Kang, M. Kawasaki, S. Tamada, T. Kamei, Y. Magara, Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes, Desalination, 131 (2000) 293–298.
  21. A. Ruiz-García, N. Melián-Martel, V. Mena, Fouling characterization of RO membranes after 11 years of operation in a brackish water desalination plant, Desalination, 430 (2018) 180–185.
  22. K. Park, L. Burlace, N. Dhakal, A. Mudgal, N.A. Stewart, P.A. Davies, Design, modelling and optimisation of a batch reverse osmosis (RO) desalination system using a free piston for brackish water treatment, Desalination, 494 (2020) 114625, doi: 10.1016/j.desal.2020.114625.
  23. M.M. Generous, N.A.A. Qasem, S.M. Zubair, An innovative hybridization of electrodialysis with reverse osmosis for brackish water desalination, Energy Conver. Manage., 245 (2021) 114589, doi: 10.1016/j.enconman.2021.114589.
  24. M.D. Víctor-Ortega, H.C. Ratnaweera, Double filtration as an effective system for removal of arsenate and arsenite from drinking water through reverse osmosis, Process Saf. Environ. Prot., 111 (2017) 399–408.
  25. G. Viader, O. Casal, B. Lefèvre, N. de Arespacochaga, C. Echevarría, J. López, C. Valderrama, J.L. Cortina, Integration of membrane distillation as volume reduction technology for in-land desalination brines management: Pre-treatments and scaling limitations, J. Environ. Manage., 289 (2021) 112549, doi: 10.1016/j.jenvman.2021.112549.
  26. Y.S. Chang, B.S. Ooi, A.L. Ahmad, C.P. Leo, S.C. Low, Vacuum membrane distillation for desalination: scaling phenomena of brackish water at elevated temperature, Sep. Purif. Technol., 254 (2021) 117572, doi: 10.1016/j.seppur.2020.117572.
  27. K.B. Bandar, M.D. Alsubei, S.A. Aljlil, N.B. Darwish, N. Hilal, Membrane distillation process application using a novel ceramic membrane for brackish water desalination, Desalination, 500 (2021) 114906, doi: 10.1016/j.desal.2020.114906.
  28. P. Pal, A.K. Manna, Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes, Water Res., 44 (2010) 5750–5760.
  29. S.K. Hubadillah, M.H.D. Othman, A.F. Ismail, M.A. Rahman, J. Jaafar, A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation, Sep. Purif. Technol., 214 (2019) 31–39.
  30. J.-P. Mericq, S. Laborie, C. Cabassud, Vacuum membrane distillation of seawater reverse osmosis brines, Water Res., 44 (2010) 5260–5273.
  31. J.-P. Méricq, S. Laborie, C. Cabassud, Vacuum membrane distillation for an integrated seawater desalination process, Desal. Water Treat., 9 (2009) 287–296
  32. J.-P. Méricq, S. Laborie, C. Cabassud, Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination, Chem. Eng. J., 166 (2011) 596–606.
  33. Q. Ma, A. Ahmadi, C. Cabassud, Optimization and design of a novel small-scale integrated vacuum membrane distillation – solar flat-plate collector module with heat recovery strategy through heat pumps, Desalination, 478 (2020) 114285, doi: 10.1016/j.desal.2019.114285.
  34. Q. Ma, A. Ahmadi, C. Cabassud, Comparative study of smallscale flat-plate direct contact membrane distillation and vacuum membrane distillation modules with integrated direct solar heating, Desalination, 529 (2022) 115633, doi: 10.1016/j.desal.2022.115633.
  35. P. Brandhuber, G. Amy, Arsenic removal by a charged ultrafiltration membrane — influences of membrane operating conditions and water quality on arsenic rejection, Desalination, 140 (2001) 1–14.
  36. H.C. Duong, H.T. Cao, N.B. Hoang, L.D. Nghiem, Reverse osmosis treatment of condensate from ammonium nitrate production: insights into membrane performance, J. Environ. Chem. Eng., 9 (2021) 106457, doi: 10.1016/j.jece.2021.106457.
  37. H.C. Duong, P. Cooper, B. Nelemans, T.Y. Cath, L.D. Nghiem, Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination, Desalination, 374 (2015) 1–9.