References

  1. D. Kouotou, H.M. Ngomo, A. Baçaoui, A. Yaacoubi, J.M. Ketcha, Physico-chemical activation of oil palm shells using response surface methodology: optimization of activated carbons preparation, Int. J. Curr. Res., 5 (2013) 431–438.
  2. T. Shalna, A. Yogamoorthi, Preparation and characterization of activated carbon from used tea dust in comparison with commercial activated carbon, Int. J. Rec. Sci. Res., 6 (2015) 2750–2755.
  3. A. Cheenmatchaya, S. Kungwankunakorn, Preparation of activated carbon derived from rice husk by simple carbonization and chemical activation for use as gasoline adsorbent, Int. J. Environ. Sci. Dev., 5 (2014) 171–176.
  4. S. Joshi, M. Adhikari, B.P. Pokharel, R.R. Pradhananga, Effects of activating agent on the activated carbon from lapsi seed stone, Res. J. Chem. Sci., 2 (2012) 80–86.
  5. R.M. Shrestha, A.P. Yadav, B.P. Pokharel, R.R. Pradhananga, Preparation and characterization of activated carbon from lapsi (Choerospondias axillaris) seed stone by chemical activation with phosphoric acid, Res. J. Chem. Sci., 3 (2012) 34–41.
  6. A.M.S. Ngueabouo, R.F.T. Tagne, D.R.T. Tchuifon, C.G. Fotsop, A.K. Tamo, S.G. Anagho, Strategy for optimizing the synthesis and characterization of activated carbons obtained by chemical activation of coffee husk, Mater. Adv., 3 (2022) 8361–8374.
  7. J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodriguez, C. Belver, Review on activated carbons by chemical activation with FeCl3, J. Carbon Res., 6 (2020) 1–25.
  8. C.S. Ngakou, H.M. Ngomo, D.R.T. Tchuifon, S.G. Anagho, Optimisation of activated carbon preparation by chemical activation of Ayous sawdust, Cucurbitaceae peelings and hen egg shells using response surface methodology, Int. Res. J. Pure Appl. Chem., 14 (2017) 1–12.
  9. A.S. Devi, M.H. Kalavathy, L.R. Miranda, Optimization of the process parameters for the preparation of activated carbon from low-cost phoenix dactylifera using response surface methodology, Austin Chem. Eng., 2 (2015) 1021.
  10. B.A. Hédi, M. Aicha, T. Nabil, Preparation of activated carbon from date stones: optimization on removal of indigo carmine from aqueous solution using a two-level full factorial design, Int. J. Eng. Res. Gen. Sci., 3 (2015) 6–17.
  11. A. Lunhong, J. Jiang, Fast removal of organic dyes from aqueous solution by AC/ferrospinel composite, Desalination, 262 (2010) 134–140.
  12. Q. Li, S. Wu, G. Liu, X. Liao, Simultaneous biosorption of cadmium(II) and lead(II) ions by pretreated biomass of Phanerochaete chrysosporium, Sep. Purif. Technol., 34 (2004) 925–940.
  13. B. Kakavandi, A.J. Jafari, R.R. Kalantary, S. Nasseri, A. Ameri, A. Esrafily, Synthesis and properties
    of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies, Iran. J. Environ. Health Sci. Eng., 10 (2013) 1–9.
  14. H.S. Nadjet, Etude de la dégradation photocatalytique de polluants organiques en présence de dioxyde de titane, en suspension aqueuse et en lit fixe, Université de Grenoble, Université Mentouri (Constantine, Algérie), 2012.
  15. J. Scaria, A. Gopinath, P.V. Nidheesh, A versatile strategy to eliminate emerging contaminants from the aqueous environment: heterogeneous Fenton process, J. Cleaner Prod., 278 (2021) 1–22.
  16. P.V. Nidheesh, Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review, R. Soc. Chem., 5 (2015) 40552–40577.
  17. A.Y. Aydar, Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials, V. Silva, Ed., Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes, IntechOpen, 2018, doi: 10.5772/intechopen.73690.
  18. M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Pham, V.K. Nguyen, T.T.T. Vu, T.K.P. Nguyen, Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide, Chemosphere, 85 (2011) 1269–1276.
  19. D.R.T. Tchuifon, S.G. Anagho, J.M. Ketcha, G.N. Nche, J.N. Ndi, Kinetics and equilibrium studies of adsorption of phenol in aqueous solution onto activated carbon prepared from rice and coffee husks, Int. J. Eng. Technol. Res., 2 (2014) 166–173.
  20. S. Timur, I.C. Kantradli, E. Ikizoglu, J. Yanik, Preparation of activated carbons from Oreganum stalks by chemical activation, Energy Fuels, 20 (2006) 2636–2641.
  21. I. Tchakala, M.L. Bawa, D.G. Boundjou, K.S. Doni, P. Nambo, Optimisation du procédé de préparation des Charbons Actifs par voie chimique (H3PO4) à partir des tourteaux de Karité et des tourteaux de Coton, Int. J. Biol. Chem. Sci., 6 (2012.) 461–478.
  22. P.G. Udofia, P.J. Udoudo, N.O. Eyen, Sensory evaluation of wheat-cassava-soybean composite flour (WCS) bread by mixture experiment design, Afr. J. Food Sci., 7 (2013) 368–374.
  23. N. Howaniec, Temperature induced development of porous structure of bituminous coal chars at high pressure, J. Sustainable Min., 15 (2016) 120–124.
  24. T. Tay, S. Ucar, S. Karagöz, Preparation and characterization of activated carbon from waste biomass, J. Hazard. Mater., 165 (2009) 481–485.
  25. Q.Y. Zhang, W.W. Zhou, Y. Zhou, X.F. Wuang, J.F. Xu, Response surface methodology to design a selective co-enrichment broth of Escherichia coli, Salmonella spp. and Staphylococcus aureus for simultaneous detection by PCR, Microbiol. Res., 167 (2012) 405–412.
  26. K. Adinarayana, P. Ellaiah, Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp., J. Pharm. Sci., 5 (2002) 272–278.
  27. R.B.N. Lekene, J.N. Ndi, A. Rauf, D. Kouotou, D.B.B. Placide, M.I. Bhanger, J.M. Ketcha, Optimization conditions of the preparation of activated carbon based egusi (Cucumeropsis mannii Naudin) seed shells for nitrate ions removal from wastewater, Am. J. Anal. Chem., 9 (2018) 439–463.
  28. L.M. Amola, T. Kamgaing, D.R.T. Tchuifon, C.D. Atemkeng, S.G. Anagho, Activated carbons based on shea nut shells (Vitellaria paradoxa): optimization of preparation by chemical means using response surface methodology and physicochemical characterization, J. Mater. Sci. Chem. Eng., 8 (2020) 53–72.
  29. M. Ikram, M. Naeem, M. Zahoor, M.M. Hanafiah, A.A. Oyekanmi, R. Ullah, D.A. Al Farraj, M.S. Elshikh, I. Zekker, N. Gulfam, Biological degradation of the Azo Dye Basic Orange 2 by Escherichia coli: a sustainable and ecofriendly approach for the treatment of textile wastewater, Water, 14 (2022) 2063, doi: 10.3390/w14132063.
  30. J.C. Rios-Hurtado, E.M. Muzquiz-Ramos, A. Zugasti-Cruz, D.A. Cortes-Hernandez, Mechanosynthesis as a simple method to obtain a magnetic composite (activated carbon/Fe3O4) for hyperthermia treatment, J. Biomater. Nanobiotechnol., 7 (2016) 19–28.
  31. A.M. Puziy, O.I. Poddubnaya, A. Martınez-Alonso, F. Suárez-Garcıa, J.M.D. Tascón, Synthetic carbons activated with phosphoric acid: II. porous structure, Carbon, 40 (2002) 1507–1519.
  32. M. Dong, H. Zhou, W. Liu, C. He, Activated carbon prepared from semi-coke as an effective adsorbent for dyes, Pol. J. Environ. Stud., 29 (2020) 1137–1142.
  33. M. Ziati, Adsorption et électro-sorption de l’arsenic (III) sur charbon à base de noyaux de dattes activés thermiquement et chimiquement, Thèse de doctorat, Université Badji Mokhtar Annaba, Annaba-Algérie, 2012, 136 pp.
  34. G.M.R. Kpinsoton, Elaboration des catalyseurs à base de charbons actifs et de latérites pour la dégradation du bleu de méthylène par procédé fenton hétérogène, Thèse de Doctorat/Ph.D., Institut 2IE, Ouagadougou, Burkina Faso, 2019, p. 179.
  35. X.R. Xu, Z.Y. Zhao, X.Y. Li, J.D. Gu, Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent, Chemosphere, 55 (2004) 73–79.
  36. A. Stefánsson, Iron(III) hydrolysis and solubility at 25°C, Environ. Sci. Technol., 41 (2007) 6117–6123.
  37. Y.L. Song, J.T. Li, H. Chen, Degradation of C.I. Acid Red 88 aqueous solution by combination of Fenton’s reagent and ultrasound irradiation, J. Chem. Technol. Biotechnol., 84 (2009) 578–583.
  38. H.S. Son, J.K. Im, K.D. Zoh, A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (FeO) and UV light, Water Res., 43 (2009) 1457–1463.
  39. J. Chen, M. Lui, L. Zhang, J. Zhang, L. Jin, Application of nano-TiO2 towards polluted water treatment combined with electro-photochemical method, Water Res., 37 (2003) 3815–3820.
  40. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. A review, Appl. Catal., B, 49 (2004) 1–14.
  41. P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparison of various advanced oxidation processes for the degradation of 4-chloro-2-nitrophenol, J. Hazard. Mater., 149 (2007) 609–614.
  42. C.M. So, M.Y. Cheng, J.C. Yu, P.K. Wong, Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation, Chemosphere, 46 (2002) 905–912.
  43. M. Saquib, M. Muneer, TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions, Dyes Pigm., 56 (2003) 37–49.
  44. A. Bopda, S.G.M. Mafo, J.N. Ndongmo, G.T. Kenda, C.G. Fotsop, I.-H.T. Kuete, C.S. Ngakou, D.R.T. Tchuifon, A.K. Tamo, G.N.-A. Nche, S.G. Anagho, Ferromagnetic biochar prepared from hydrothermally modified calcined mango seeds for Fenton-like degradation of Indigo Carmine, 8 (2022) 81, doi: 10.3390/c8040081.
  45. N. Um, T. Hirato, Precipitation of cerium sulfate converted from cerium oxide in sulfuric acid solutions and the conversion kinetics, Mater. Trans., 53 (2012) 1986–1991.
  46. S.A. Hayes, P. Yu, T.J. O’Keefe, M.J. O’Keefe, J.O. Stoffer, The phase stability of cerium species in aqueous systems I. E-pH diagram for the Ce-HClO4-H2O system, J. Electrochem. Soc., 149 (2002) 623–630.
  47. Y. Wang, X. Shen, F. Chen, Improving the catalytic activity of CeO2/H2O2 system by sulfation pretreatment of CeO2, J. Mol. Catal. A, 381 (2014) 38–45.
  48. S.P. Wellington, S.F. Renato, Azo dye degradation by recycled waste zero-valent iron powder, J. Braz. Chem. Soc., 17 (2006) 832–838.