References
- D. Kouotou, H.M. Ngomo, A. Baçaoui, A. Yaacoubi, J.M. Ketcha,
Physico-chemical activation of oil palm shells using response
surface methodology: optimization of activated carbons
preparation, Int. J. Curr. Res., 5 (2013) 431–438.
- T. Shalna, A. Yogamoorthi, Preparation and characterization
of activated carbon from used tea dust in comparison with
commercial activated carbon, Int. J. Rec. Sci. Res., 6 (2015)
2750–2755.
- A. Cheenmatchaya, S. Kungwankunakorn, Preparation of
activated carbon derived from rice husk by simple carbonization
and chemical activation for use as gasoline adsorbent,
Int. J. Environ. Sci. Dev., 5 (2014) 171–176.
- S. Joshi, M. Adhikari, B.P. Pokharel, R.R. Pradhananga, Effects
of activating agent on the activated carbon from lapsi seed
stone, Res. J. Chem. Sci., 2 (2012) 80–86.
- R.M. Shrestha, A.P. Yadav, B.P. Pokharel, R.R. Pradhananga,
Preparation and characterization of activated carbon from
lapsi (Choerospondias axillaris) seed stone by chemical activation
with phosphoric acid, Res. J. Chem. Sci., 3 (2012) 34–41.
- A.M.S. Ngueabouo, R.F.T. Tagne, D.R.T. Tchuifon, C.G. Fotsop,
A.K. Tamo, S.G. Anagho, Strategy for optimizing the synthesis
and characterization of activated carbons obtained by chemical
activation of coffee husk, Mater. Adv., 3 (2022) 8361–8374.
- J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodriguez,
C. Belver, Review on activated carbons by chemical activation
with FeCl3, J. Carbon Res., 6 (2020) 1–25.
- C.S. Ngakou, H.M. Ngomo, D.R.T. Tchuifon, S.G. Anagho,
Optimisation of activated carbon preparation by chemical
activation of Ayous sawdust, Cucurbitaceae peelings and hen
egg shells using response surface methodology, Int. Res. J. Pure
Appl. Chem., 14 (2017) 1–12.
- A.S. Devi, M.H. Kalavathy, L.R. Miranda, Optimization of the
process parameters for the preparation of activated carbon
from low-cost phoenix dactylifera using response surface
methodology, Austin Chem. Eng., 2 (2015) 1021.
- B.A. Hédi, M. Aicha, T. Nabil, Preparation of activated carbon
from date stones: optimization on removal of indigo carmine
from aqueous solution using a two-level full factorial design,
Int. J. Eng. Res. Gen. Sci., 3 (2015) 6–17.
- A. Lunhong, J. Jiang, Fast removal of organic dyes from aqueous
solution by AC/ferrospinel composite, Desalination, 262 (2010)
134–140.
- Q. Li, S. Wu, G. Liu, X. Liao, Simultaneous biosorption of
cadmium(II) and lead(II) ions by pretreated biomass of
Phanerochaete chrysosporium, Sep. Purif. Technol., 34 (2004)
925–940.
- B. Kakavandi, A.J. Jafari, R.R. Kalantary, S. Nasseri, A. Ameri,
A. Esrafily, Synthesis and properties
of Fe3O4-activated carbon
magnetic nanoparticles for removal of aniline from aqueous
solution: equilibrium, kinetic and thermodynamic studies,
Iran. J. Environ. Health Sci. Eng., 10 (2013) 1–9.
- H.S. Nadjet, Etude de la dégradation photocatalytique de
polluants organiques en présence de dioxyde de titane, en
suspension aqueuse et en lit fixe, Université de Grenoble,
Université Mentouri (Constantine, Algérie), 2012.
- J. Scaria, A. Gopinath, P.V. Nidheesh, A versatile strategy
to eliminate emerging contaminants from the aqueous
environment: heterogeneous Fenton process, J. Cleaner Prod.,
278 (2021) 1–22.
- P.V. Nidheesh, Heterogeneous Fenton catalysts for the
abatement of organic pollutants from aqueous solution:
a review, R. Soc. Chem., 5 (2015) 40552–40577.
- A.Y. Aydar, Utilization of Response Surface Methodology in
Optimization of Extraction of Plant Materials, V. Silva, Ed.,
Statistical Approaches with Emphasis on Design of Experiments
Applied to Chemical Processes, IntechOpen, 2018, doi: 10.5772/intechopen.73690.
- M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Pham, V.K. Nguyen,
T.T.T. Vu, T.K.P. Nguyen, Activated carbon/Fe3O4 nanoparticle
composite: fabrication, methyl orange removal and regeneration
by hydrogen peroxide, Chemosphere, 85 (2011)
1269–1276.
- D.R.T. Tchuifon, S.G. Anagho, J.M. Ketcha, G.N. Nche, J.N. Ndi,
Kinetics and equilibrium studies of adsorption of phenol in
aqueous solution onto activated carbon prepared from rice
and coffee husks, Int. J. Eng. Technol. Res., 2 (2014) 166–173.
- S. Timur, I.C. Kantradli, E. Ikizoglu, J. Yanik, Preparation of
activated carbons from Oreganum stalks by chemical activation,
Energy Fuels, 20 (2006) 2636–2641.
- I. Tchakala, M.L. Bawa, D.G. Boundjou, K.S. Doni, P. Nambo,
Optimisation du procédé de préparation des Charbons Actifs
par voie chimique (H3PO4) à partir des tourteaux de Karité et
des tourteaux de Coton, Int. J. Biol. Chem. Sci., 6 (2012.) 461–478.
- P.G. Udofia, P.J. Udoudo, N.O. Eyen, Sensory evaluation of
wheat-cassava-soybean composite flour (WCS) bread by
mixture experiment design, Afr. J. Food Sci., 7 (2013) 368–374.
- N. Howaniec, Temperature induced development of
porous structure of bituminous coal chars at high pressure,
J. Sustainable Min., 15 (2016) 120–124.
- T. Tay, S. Ucar, S. Karagöz, Preparation and characterization
of activated carbon from waste biomass, J. Hazard. Mater.,
165 (2009) 481–485.
- Q.Y. Zhang, W.W. Zhou, Y. Zhou, X.F. Wuang, J.F. Xu, Response
surface methodology to design a selective co-enrichment broth
of Escherichia coli, Salmonella spp. and Staphylococcus aureus for
simultaneous detection by PCR, Microbiol. Res., 167 (2012)
405–412.
- K. Adinarayana, P. Ellaiah, Response surface optimization of
the critical medium components for the production of alkaline
protease by a newly isolated Bacillus sp., J. Pharm. Sci., 5 (2002)
272–278.
- R.B.N. Lekene, J.N. Ndi, A. Rauf, D. Kouotou, D.B.B. Placide,
M.I. Bhanger, J.M. Ketcha, Optimization conditions of the
preparation of activated carbon based egusi (Cucumeropsis
mannii Naudin) seed shells for nitrate ions removal from
wastewater, Am. J. Anal. Chem., 9 (2018) 439–463.
- L.M. Amola, T. Kamgaing, D.R.T. Tchuifon, C.D. Atemkeng,
S.G. Anagho, Activated carbons based on shea nut shells
(Vitellaria paradoxa): optimization of preparation by chemical
means using response surface methodology and physicochemical
characterization, J. Mater. Sci. Chem. Eng., 8 (2020)
53–72.
- M. Ikram, M. Naeem, M. Zahoor, M.M. Hanafiah, A.A. Oyekanmi,
R. Ullah, D.A. Al Farraj, M.S. Elshikh, I. Zekker,
N. Gulfam, Biological degradation of the Azo Dye Basic Orange
2 by Escherichia coli: a sustainable and ecofriendly approach
for the treatment of textile wastewater, Water, 14 (2022) 2063,
doi: 10.3390/w14132063.
- J.C. Rios-Hurtado, E.M. Muzquiz-Ramos, A. Zugasti-Cruz,
D.A. Cortes-Hernandez, Mechanosynthesis as a simple method
to obtain a magnetic composite (activated carbon/Fe3O4) for
hyperthermia treatment, J. Biomater. Nanobiotechnol., 7 (2016)
19–28.
- A.M. Puziy, O.I. Poddubnaya, A. Martınez-Alonso, F. Suárez-Garcıa, J.M.D. Tascón, Synthetic carbons activated with
phosphoric acid: II. porous structure, Carbon, 40 (2002)
1507–1519.
- M. Dong, H. Zhou, W. Liu, C. He, Activated carbon prepared
from semi-coke as an effective adsorbent for dyes, Pol. J.
Environ. Stud., 29 (2020) 1137–1142.
- M. Ziati, Adsorption et électro-sorption de l’arsenic (III) sur
charbon à base de noyaux de dattes activés thermiquement et
chimiquement, Thèse de doctorat, Université Badji Mokhtar
Annaba, Annaba-Algérie, 2012, 136 pp.
- G.M.R. Kpinsoton, Elaboration des catalyseurs à base de
charbons actifs et de latérites pour la dégradation du bleu de
méthylène par procédé fenton hétérogène, Thèse de Doctorat/Ph.D., Institut 2IE, Ouagadougou, Burkina Faso, 2019, p. 179.
- X.R. Xu, Z.Y. Zhao, X.Y. Li, J.D. Gu, Chemical oxidative
degradation of methyl tert-butyl ether in aqueous solution by
Fenton’s reagent, Chemosphere, 55 (2004) 73–79.
- A. Stefánsson, Iron(III) hydrolysis and solubility at 25°C,
Environ. Sci. Technol., 41 (2007) 6117–6123.
- Y.L. Song, J.T. Li, H. Chen, Degradation of C.I. Acid Red 88
aqueous solution by combination of Fenton’s reagent and
ultrasound irradiation, J. Chem. Technol. Biotechnol., 84 (2009)
578–583.
- H.S. Son, J.K. Im, K.D. Zoh, A Fenton-like degradation
mechanism for 1,4-dioxane using zero-valent iron (FeO) and
UV light, Water Res., 43 (2009) 1457–1463.
- J. Chen, M. Lui, L. Zhang, J. Zhang, L. Jin, Application of
nano-TiO2 towards polluted water treatment combined with
electro-photochemical method, Water Res., 37 (2003) 3815–3820.
- I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetic and
mechanistic investigations. A review, Appl. Catal., B, 49 (2004)
1–14.
- P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu,
Comparison of various advanced oxidation processes for
the degradation of 4-chloro-2-nitrophenol, J. Hazard. Mater.,
149 (2007) 609–614.
- C.M. So, M.Y. Cheng, J.C. Yu, P.K. Wong, Degradation of azo dye
Procion Red MX-5B by photocatalytic oxidation, Chemosphere,
46 (2002) 905–912.
- M. Saquib, M. Muneer, TiO2-mediated photocatalytic
degradation of a triphenylmethane dye (gentian violet), in
aqueous suspensions, Dyes Pigm., 56 (2003) 37–49.
- A. Bopda, S.G.M. Mafo, J.N. Ndongmo, G.T. Kenda,
C.G. Fotsop, I.-H.T. Kuete, C.S. Ngakou, D.R.T. Tchuifon,
A.K. Tamo, G.N.-A. Nche, S.G. Anagho, Ferromagnetic biochar
prepared from hydrothermally modified calcined mango seeds
for Fenton-like degradation of Indigo Carmine, 8 (2022) 81,
doi: 10.3390/c8040081.
- N. Um, T. Hirato, Precipitation of cerium sulfate converted
from cerium oxide in sulfuric acid solutions and the conversion
kinetics, Mater. Trans., 53 (2012) 1986–1991.
- S.A. Hayes, P. Yu, T.J. O’Keefe, M.J. O’Keefe, J.O. Stoffer, The
phase stability of cerium species in aqueous systems I. E-pH
diagram for the Ce-HClO4-H2O system, J. Electrochem. Soc.,
149 (2002) 623–630.
- Y. Wang, X. Shen, F. Chen, Improving the catalytic activity of
CeO2/H2O2 system by sulfation pretreatment of CeO2, J. Mol.
Catal. A, 381 (2014) 38–45.
- S.P. Wellington, S.F. Renato, Azo dye degradation by recycled
waste zero-valent iron powder, J. Braz. Chem. Soc., 17 (2006)
832–838.