References

  1. A. Krzyżanowska, M. Regel-Rosocka, The effect of fermentation broth composition on removal of carboxylic acids by reactive extraction with Cyanex 923, Sep. Purif. Technol., 236 (2020) 116289, doi: 10.1016/j.seppur.2019.116289.
  2. K. Ayadi, M. Meziane, K. Bounedjar, D.T. Douma, S. Bensouna, M. Fellah, K. El-Miloudi, Lactic acid production by immobilization of Lactobacillus sp. isolated from olive mill wastewater, Desal. Water Treat., 255 (2022) 83–93.
  3. N. Halilibrahimoglu, I. Inci, N. Baylan, Lactic acid recovery from water by Amberlite IRA-400, Desal. Water Treat., 172 (2019) 190–198.
  4. Y. Nakagawa, T. Kusumi, J. Ogihara, M. Tamura, T. Arai, K. Tomishige, Erythritol: another C4 platform chemical in biomass refinery, ACS Omega, 5 (2020) 2520–2530.
  5. G. de Brito Cardoso, I.N. Souza, T. Mourao, M.G. Freire, C.M.F. Soares, A.S. Lima, Novel aqueous two-phase systems composed of acetonitrile and polyols: phase diagrams and extractive performance, Sep. Purif. Technol., 124 (2014) 54–60.
  6. G.A. Martau, V. Coman, D.C. Vodnar, Recent advances in the biotechnological production of erythritol and mannitol, Crit. Rev. Biotechnol., 40, 5 (2020) 608–622.
  7. S. Wang, H. Wang, J. Lv, Z. Deng, H. Cheng, Highly efficient erythritol recovery from waste erythritol mother liquor by a yeast-mediated biorefinery process, J. Agric. Food Chem., 65 (2017) 11020–11028.
  8. X. Liu, J. Lv, J. Xu, J. Xia, A. He, T. Zhang, X. Li, J. Xu, Effects of osmotic pressure and pH on citric acid and erythritol production from waste cooking oil by Yarrowia lipolytica, Eng. Life Sci., 18 (2018) 344–352.
  9. T. Rice, E. Zannini, E.K. Arendt, A.A. Coffey, A review of polyols – biotechnological production, food applications, regulation, labeling and health effects, Crit. Rev. Food Sci. Nutr., 60 (2019) 2034–2051.
  10. A.M. Mirończuk, D.A. Rzechonek, A. Biegalska, M. Rakicka, A. Dobrowolski, A novel strain of Yarrowia lipolytica as a platform for value‑added product synthesis from glycerol, Biotechnol. Biofuels, 9 (2016) 180, doi: 10.1186/s13068-016-0593-z.
  11. S.S. Jagtap, C.V. Rao, Microbial conversion of xylose into useful bioproducts, Appl. Microbiol. Biotechnol., 102 (2018) 9015–9036.
  12. N. Wang, P. Chi, Y. Zou, Y. Xu, X. Shuo, M. Bilal, P. Fickers, H. Cheng, Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity, Biotechnol. Biofuels, 13 (2020) 176, doi: 10.1186/s13068-020-01815-8.
  13. B. Zieniuk, A. Fabiszewska, Yarrowia lipolytica: a beneficious yeast in biotechnology as a rare opportunistic fungal pathogen: a minireview, World J. Microbiol. Biotechnol., 35 (2019) 10,
    doi: 10.1007/s11274-018-2583-8.
  14. G. Billerach, L. Preziosi-Belloy, C.S.K. Lin, H. Fulcrand, E. Dubreucq, E. Grousseau, Impact of nitrogen deficiency on succinic acid production by engineered strains of Yarrowia lipolytica, J. Biotechnol., 336 (2021) 30–40.
  15. D.A. Rzechonek, A. Dobrowolski, W. Rymowicz, A.M. Mirończuk, Recent advances in biological production of erythritol, Crit. Rev. Biotechnol., 38 (2018) 620–633.
  16. X. Liu, Y. Yan, P. Zhao, J. Song, X. Yu, Z. Wang, J. Xia, X. Wang, Oil crop wastes as substrate candidates for enhancing erythritol production by modified Yarrowia lipolytica via one-step solid state fermentation, Bioresour. Technol., 294 (2019) 122194, doi: 10.1016/j.biortech.2019.122194.
  17. K.K. Miller, H.S. Alper, Yarrowia lipolytica: more than an oleaginous workhorse, Appl. Microbiol. Biotechnol., 103 (2019) 9251–9262.
  18. A.M. Mirończuk, A. Biegalska, K. Zugaj, D.A. Rzechonek, A. Dobrowolski, A role of a newly identified isomerase from Yarrowia lipolytica in erythritol catabolism, Front. Microbiol., 9 (2018) 1122, doi: 10.3389/fmicb.2018.01122.
  19. M. Rakicka, A. Biegalska, W. Rymowicz, A. Dobrowolski, A.M. Mirończuk, Polyol production from waste materials by genetically modified Yarrowia lipolytica, Bioresour. Technol., 243 (2017) 393–399.
  20. A. Żywicka, A. Junka, D. Ciecholewska-Juśko, P. Migdał, J. Czajkowska, K. Fijałkowski, Significant enhancement of citric acid production by Yarrowia lipolytica immobilized in bacterial cellulose-based carrier, J. Biotechnol., 321 (2020) 13–22.
  21. S. Krajangsod, S. Chotikamas, A. Tawai, M. Sriariyanun, Measurement and thermodynamic modelling of erythritol solubility in aqueous solvents, Orient. J. Chem., 34 (2017) 265–275.
  22. F. Carly, P. Fickers, Erythritol production by yeasts: a snapshot of current knowledge, Yeast, 35 (2017) 455–463.
  23. L.V. da Silva, M.A.Z. Coelho, P.F.F. Amaral, P. Fickers, A novel osmotic pressure strategy to improve erythritol production by Yarrowia lipolytica from glycerol, Bioprocess Biosyst. Eng., 41 (2018) 1883–1886.
  24. Y.C. Park, E.J. Oh, J.H. Jo, Y.S. Jin, J.H. Seo, Recent advances in biological production of sugar alcohols, Curr. Opin. Biotechnol., 37 (2016) 105–113.
  25. R. Pourahmad, D. Khorramzadeh, Physicochemical and organoleptic properties of drinking powder containing soymilk powder, stevia, isomalt, and erythritol, J. Food Process Preserv., 40 (2016) 1206–1214.
  26. M. Rakicka, B. Rukowicz, A. Rywińska, Z. Lazar, W. Rymowicz, Technology of efficient continuous erythritol production from glycerol, J. Cleaner Prod., 139 (2016) 905–913.
  27. K. Robards, D. Ryan, Principles and Practice of Modern Chromatographic Methods (2nd ed.), Academic Press, Elsevier, 2022, pp. 495–513.
  28. W. Heymann, J. Glaser, F. Schlegel, W. Johnson, P. Rolandi, E. von Lieres, Advanced score system and automated search strategies for parameter estimation in mechanistic chromatography modeling, J. Chromatogr. A, 1661 (2022) 462693, doi: 10.1016/j.chroma.2021.462693.
  29. W. Piątkowski, D. Antos, K. Kaczmarski, Modeling of preparative chromatography processes with slow intraparticle mass transport kinetics, J. Chromatogr. A, 988 (2003) 219–231.
  30. H. Schmidt-Traub, Preparative Chromatography of Fine Chemicals and Pharmaceutical Agents, Wiley-VCH, Weinheim, 2005.
  31. M. Leśko, D. Asberg, M. Enmark, J. Samuelsson, T. Fornstedt, K. Kaczmarski, Choice of model for estimation of adsorption isotherm parameters in gradient elution preparative liquid chromatography, Chromatographia, 78 (2015) 1293–1297.
  32. B. Rukowicz, K. Alejski, A biologically-derived 1,3-propanediol recovery from fermentation broth using preparative liquid chromatography, Sep. Purif. Technol., 205 (2018) 196–202.
  33. K. Kaczmarski, D. Antos, Use of simulated annealing for optimization of chromatographic separations, Acta Chromatogr., 17 (2006) 20–45.
  34. W. Piątkowski, Analysis of the design and optimization of preparative chromatography on the basis of the separation of a real post-reaction mixture, Acta Chromatogr., 16 (2006) 92–118.
  35. B. Rukowicz, K. Polaszek, K. Alejski, Separation of Erythritol from Fermentation Broth Using Preparative Chromatography, M. Ochowiak, S. Woziwodzki, P. Mitkowski, M. Doligalski, Eds., Practical Aspects of Chemical Engineering, Springer Nature, Switzerland, 2020, pp. 383–391.
  36. M. Rakicka-Pustułka, A.M. Mirończuk, E. Celińska, W. Białas, W. Rymowicz, Scale-up of the erythritol production technology – process simulation and techno-economic analysis, J. Cleaner Prod., 257 (2020) 120533, doi: 10.1016/j.jclepro.2020.120533.
  37. H. Zeidan, D. Ozdemir, N. Kose, E. Pehlivan, G. Ahmetli, M.E. Marti, Separation of formic acid and acetic acid from aqueous solutions using sugar beet processing fly ash: characterization, kinetics, isotherms and thermodynamics, Desal. Water Treat., 202 (2020) 283–294.
  38. A. Andrzejewski, M. Szczygiełda, K. Prochaska, Multi-response factorial design optimization of organic acid separation process using electrodialysis with bipolar membrane, Desal. Water Treat., 214 (2021) 95–106.
  39. L. Daza-Serna, A. Serna-Loaiza, A. Masi, R.L. Mach, A.R. March-Aigner, A. Friedl, From the culture broth to the erythritol crystals: an opportunity for circular economy, Appl. Microbiol. Biotechnol., 105 (2021) 4467–4486.