References

  1. M. Rauf, S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J., 151 (2009) 10–18.
  2. L. Lin, W. Jiang, L. Chen, P. Xu, H. Wang, Treatment of produced water with photocatalysis: recent advances, affecting factors and future research prospects, Catalysts, 10 (2020) 924, doi: 10.3390/catal10080924.
  3. J. Conkle, C. Lattao, J. White, R. Cook, Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil, Chemosphere, 80 (2010) 1353–1359.
  4. J. Gregory, R. Dhond, Wastewater treatment by ion exchange, Water Res., 6 (1972) 681–684.
  5. S. Hube, M. Eskafi, K. Hrafnkelsdóttir, B. Bjarnadóttir, M. Bjarnadóttir, S. Axelsdóttir, B. Wu, Direct membrane filtration for wastewater treatment and resource recovery: a review, Sci. Total Environ., 710 (2020) 136375, doi: 10.1016/j.scitotenv.2019.136375.
  6. F.D. Guerra, M.F. Attia, D.C. Whitehead, F. Alexis, Nanotechnology for environmental remediation: materials and applications, Molecules, 23 (2018) 1760, doi: 10.3390/molecules23071760.
  7. S. Horikoshi, N. Serpone, Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? background and prospects, Catal. Today, 340 (2020) 334–346.
  8. M.M. Byranvand, A.N. Kharat, L. Fatholahi, Z.M. Beiranvand, A review on synthesis of nano-TiO2 via different methods, J. Nanostruct., 3 (2013) 1–9.
  9. L. Stephen, Titanium Dioxide Versatile Solid Crystalline: An Overview, In: R.S. Dongre, D.R. Peshwe, Eds., Assorted Dimensional Reconfigurable Materials, InTechOpen, London, United Kingdom, 2020.
  10. S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem., 19 (2013) 1761–1769.
  11. S. Valencia, J. Marín, G. Restrepo, Study of the bandgap of synthesized titanium dioxide nanoparticles using the sol–gel method and a hydrothermal treatment, Open Mater. Sci. J., 4 (2010) 9–14.
  12. J. Cui, F. Zhang, H. Li, J. Cui, Y. Ren, X. Yu, Recent progress in biochar-based photocatalysts for wastewater treatment: synthesis, mechanisms, and applications, Appl. Sci., 10 (2020) 1019, doi: 10.3390/app10031019.
  13. F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva-Acuña, Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors, J. Mater. Chem. C, 3 (2015) 10715–10722.
  14. X. Kang, S. Liu, Z. Dai, Y. He, X. Song, Z. Tan, Titanium dioxide: from engineering to applications, Catalysts, 9 (2019) 191, doi: 10.3390/catal9020191.
  15. S.S. Muniandy, N.H. Mohd Kaus, Z.-T. Jiang, M. Altarawneh, H.L. Lee, Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities, RSC Adv., 7 (2017) 48083–48094.
  16. N.H.M. Idris, J. Rajakumar, K.Y. Cheong, B.J. Kennedy, T. Ohno, A. Yamakata, H.L. Lee, Titanium dioxide/polyvinyl alcohol/cork nanocomposite: a floating photocatalyst for the degradation of methylene blue under irradiation of a visible light source, ACS Omega, 6 (2021) 14493–14503.
  17. H. Yang, K. Zhang, R. Shi, X. Li, X. Dong, Y. Yu, Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions, J. Alloys Compd., 413 (2006) 302–306.
  18. N. Chaibakhsh, N. Ahmadi, M.A. Zanjanchi, Optimization of photocatalytic degradation of neutral red dye using TiO2 nanocatalyst via Box–Behnken design, Desal. Water Treat., 57 (2016) 9296–9306.
  19. A.R. Johnsen, L.Y. Wick, H. Harms, Principles of microbial PAH-degradation in soil, Environ. Pollut., 133 (2005) 71–84.
  20. B. Pare, P. Singh, S. Jonnalagadda, Visible light-driven photocatalytic degradation and mineralization of neutral red dye in a slurry photoreactor, Indian J. Chem., 17 (2010) 391–395.
  21. M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, J. Hazard. Mater., 181 (2010) 1039–1050.
  22. B. Sarwan, B. Pare, A.D. Acharya, S.B. Jonnalagadda, Mineralization and toxicity reduction of textile dye neutral red in aqueous phase using BiOCl photocatalysis, J. Photochem. Photobiol., B, 116 (2012) 48–55.
  23. M.M. Alnuaimi, M.A. Rauf, S.S. Ashraf, Comparative decoloration study of neutral red by different oxidative processes, Dyes Pigm., 72 (2007) 367–371.
  24. X.-Z. Ding, Z.-Z. Qi, Y.-Z. He, Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol–gel process, J. Mater. Sci. Lett., 14 (1995) 21–22.
  25. Y. Fang, J. Fu, P. Liu, B. Cu, Morphology and characteristics of 3D nanonetwork porous starch-based nanomaterial via a simple sacrifice template approach for clove essential oil encapsulation, Ind. Crops Prod., 143 (2020) 111939, doi: 10.1016/j.indcrop.2019.111939.
  26. M.M. Ahmad, S. Mushtaq, H. Al Qahtani, A. Sedky, M. Alam, Investigation of TiO2 nanoparticles synthesized by sol–gel method for effectual photodegradation, oxidation and reduction reaction, Crystals, 11 (2021) 1456, doi: 10.3390/cryst11121456.
  27. S. Abbad, K. Guergouri, S. Gazaout, S. Djebabra, A. Zertal, R. Barille, M. Zaabat, Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol–gel route, J. Environ. Chem. Eng., 8 (2020) 103718, doi: 10.1016/j.jece.2020.103718.
  28. D. Komaraiah, E. Radha, N. Kalarikkal, J. Sivakumar, M.V. Ramana Reddy, R. Sayanna, Structural, optical and photoluminescence studies of sol–gel synthesized pure and iron doped TiO2 photocatalysts, Ceram. Int., 45 (2019) 25060–25068.
  29. Y. Quintero, E. Mosquera, J. Diosa, A. García, Ultrasonic-assisted sol–gel synthesis of TiO2 nanostructures: influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance, J. Sol-Gel Sci. Technol., 94 (2020) 477–485.
  30. X. Chen, S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891–2959.
  31. H.-J. Park, J.Y. Kim, J. Kim, J.-H. Lee, J.-S. Hahn, M.B. Gu, J. Yoon, Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity, Water Res., 43 (2009) 1027–1032.
  32. G.L. Newton, J.R. Milligan, Fluorescence detection of hydroxyl radicals, Radiat. Phys. Chem., 75 (2006) 473–478.
  33. K. Kawasaki, Y. Kamagata, Phosphate-catalyzed hydrogen peroxide formation from agar, gellan,
    and κ-carrageenan and recovery of microbial cultivability via catalase and pyruvate, Appl. Environ. Microbiol., 83 (2017) e01366, doi: 10.1128/AEM.01366-17.
  34. M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method, J. Alloys Compd., 553 (2013) 19–29.
  35. S.L.N. Zulmajdi, N.I.I. Zamri, A.H. Mahadi, M.Y.H. Rosli, F. Ja’afar, H.M. Yasin, E. Kusrini, J. Hobley, A. Usman, Sol–gel preparation of different crystalline phases of TiO2 nanoparticles for photocatalytic degradation of methylene blue in aqueous solution, Am. J. Nanomater., 7 (2019) 39–45.
  36. B.H. Toby, R factors in Rietveld analysis: how good is good enough?, Powder Diffr., 21 (2006) 67–70.
  37. N.S. Allen, N. Mahdjoub, V. Vishnyakov, P.J. Kelly, R.J. Kriek, The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2), Polym. Degrad. Stab., 150 (2018) 31–36.
  38. T.A. Kandiel, L. Robben, A. Alkaim, D. Bahnemann, Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities, Photochem. Photobiol. Sci., 12 (2013) 602–609.
  39. W. Nachit, H. Ait Ahsaine, Z. Ramzi, S. Touhtouh, I. Goncharova, K. Benkhouja, Photocatalytic activity of anatasebrookite TiO2 nanoparticles synthesized by sol–gel method at low temperature, Opt. Mater. (Amst.), 129 (2022) 112256, doi: 10.1016/j.optmat.2022.112256.
  40. K.V. Baiju, S. Shukla, K.S. Sandhya, J. James, K.G.K. Warrier, Photocatalytic activity of sol–gel-derived nanocrystalline titania, J. Phys. Chem. C, 111 (2007) 7612–7622.
  41. M.C. Ceballos-Chuc, C.M. Ramos-Castillo, M. Rodríguez-Pérez, M.Á. Ruiz-Gómez, G. Rodríguez-Gattorno, J. Villanueva-Cab, Synergistic correlation in the colloidal properties of TiO2 nanoparticles and its impact on the photocatalytic activity, Inorganics, 10 (2022) 125, doi: 10.3390/inorganics10090125.
  42. D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2, J. Nanomater., 10 (2020) 546,
    doi: 10.3390/nano10030546.
  43. S.K. Haram, B.M. Quinn, A.J. Bard, Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical bandgaps, J. Am. Chem. Soc., 123 (2001) 8860–8861.
  44. R. Fernández-Climent, S. Giménez, M. García-Tecedor, The role of oxygen vacancies in water splitting photoanodes, Sustainable Energy Fuels, 4 (2020) 5916–5926.
  45. B. Plešngerová, G. Sučik, M. Maryška, D. Horkavcova, Hydroxyapatite coatings deposited from alcohol suspensions by electrophoretic deposition on titanium substrate, Ceram. Silik., 51 (2007) 15–23.
  46. K. Kato, Y. Uemura, K. Asakura, A. Yamakata, Role of oxygen vacancy in the photocarrier dynamics of WO3 photocatalysts: the case of recombination centers, J. Phys. Chem. C, 126 (2022) 9257–9263.
  47. N. Ali, A. Said, F. Ali, F. Raziq, Z. Ali, M. Bilal, L. Reinert, T. Begum, H.M.N. Iqbal, Photocatalytic degradation of Congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance, Water Air Soil Pollut., 231 (2020) 50,
    doi: 10.1007/s11270-020-4410-8.
  48. M.F. Hanafi, N. Sapawe, Effect of initial concentration on the photocatalytic degradation of Remazol Brilliant Blue dye using nickel catalyst, Mater. Today Proc., 31 (2020) 318–320.
  49. J. Chen, Y. Xiong, M. Duan, X. Li, S. Fang, S. Qin, R. Zhang, Insight into the synergistic effect of adsorption–photocatalysis for the removal of organic dye pollutants by Cr-doped ZnO, Langmuir, 36 (2020) 520–533.
  50. H. Qian, Q. Hou, E. Duan, J. Niu, Y. Nie, C. Bai, X. Bai, M. Ju, Honeycombed Au@C-TiO2–X catalysts for enhanced photocatalytic mineralization of Acid red 3R under visible light, J. Hazard. Mater., 391 (2020) 122246, doi: 10.1016/j.jhazmat.2020.122246.
  51. B. Ghasemi, B. Anvaripour, S. Jorfi, N. Jaafarzadeh, Enhanced photocatalytic degradation and mineralization of furfural using UVC/TiO2/GAC composite in aqueous solution, Int. J. Photoenergy, 2016 (2016) 2782607, doi: 10.1155/2016/2782607.
  52. J. Rodrigues, T. Hatami, J.M. Rosa, E.B. Tambourgi, Photocatalytic degradation of Reactive Blue 21 dye using ZnO nanoparticles: experiment, modelling, and sensitivity analysis, Environ. Technol., 42 (2021) 3675–3687.
  53. I.D. Rettig, T.M. McCormick, Enrolling reactive oxygen species in photon-to-chemical energy conversion: fundamentals, technological advances, and applications, Adv. Phys.: X, 6 (2021) 1950049, doi: 10.1080/23746149.2021.1950049.