References
- M. Rauf, S. Ashraf, Fundamental principles and application of
heterogeneous photocatalytic degradation of dyes in solution,
Chem. Eng. J., 151 (2009) 10–18.
- L. Lin, W. Jiang, L. Chen, P. Xu, H. Wang, Treatment of produced
water with photocatalysis: recent advances, affecting factors
and future research prospects, Catalysts, 10 (2020) 924, doi:
10.3390/catal10080924.
- J. Conkle, C. Lattao, J. White, R. Cook, Competitive sorption
and desorption behavior for three fluoroquinolone antibiotics
in a wastewater treatment wetland soil, Chemosphere, 80 (2010)
1353–1359.
- J. Gregory, R. Dhond, Wastewater treatment by ion exchange,
Water Res., 6 (1972) 681–684.
- S. Hube, M. Eskafi, K. Hrafnkelsdóttir, B. Bjarnadóttir, M.
Bjarnadóttir, S. Axelsdóttir, B. Wu, Direct membrane filtration for
wastewater treatment and resource recovery: a review, Sci. Total
Environ., 710 (2020) 136375, doi: 10.1016/j.scitotenv.2019.136375.
- F.D. Guerra, M.F. Attia, D.C. Whitehead, F. Alexis,
Nanotechnology for environmental remediation: materials
and applications, Molecules, 23 (2018) 1760, doi: 10.3390/molecules23071760.
- S. Horikoshi, N. Serpone, Can the photocatalyst TiO2 be
incorporated into a wastewater treatment method? background
and prospects, Catal. Today, 340 (2020) 334–346.
- M.M. Byranvand, A.N. Kharat, L. Fatholahi, Z.M. Beiranvand,
A review on synthesis of nano-TiO2 via different methods,
J. Nanostruct., 3 (2013) 1–9.
- L. Stephen, Titanium Dioxide Versatile Solid Crystalline:
An Overview, In: R.S. Dongre, D.R. Peshwe, Eds., Assorted
Dimensional Reconfigurable Materials, InTechOpen, London,
United Kingdom, 2020.
- S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment
applications, J. Ind. Eng. Chem., 19 (2013) 1761–1769.
- S. Valencia, J. Marín, G. Restrepo, Study of the bandgap of
synthesized titanium dioxide nanoparticles using the sol–gel
method and a hydrothermal treatment, Open Mater. Sci. J., 4
(2010) 9–14.
- J. Cui, F. Zhang, H. Li, J. Cui, Y. Ren, X. Yu, Recent progress
in biochar-based photocatalysts for wastewater treatment:
synthesis, mechanisms, and applications, Appl. Sci., 10 (2020)
1019, doi: 10.3390/app10031019.
- F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva-Acuña,
Multi-phase microstructures drive exciton dissociation in neat
semicrystalline polymeric semiconductors, J. Mater. Chem. C, 3
(2015) 10715–10722.
- X. Kang, S. Liu, Z. Dai, Y. He, X. Song, Z. Tan, Titanium dioxide:
from engineering to applications, Catalysts, 9 (2019) 191, doi:
10.3390/catal9020191.
- S.S. Muniandy, N.H. Mohd Kaus, Z.-T. Jiang, M. Altarawneh,
H.L. Lee, Green synthesis of mesoporous anatase TiO2
nanoparticles and their photocatalytic activities, RSC Adv.,
7 (2017) 48083–48094.
- N.H.M. Idris, J. Rajakumar, K.Y. Cheong, B.J. Kennedy, T. Ohno,
A. Yamakata, H.L. Lee, Titanium dioxide/polyvinyl alcohol/cork
nanocomposite: a floating photocatalyst for the degradation of
methylene blue under irradiation of a visible light source, ACS
Omega, 6 (2021) 14493–14503.
- H. Yang, K. Zhang, R. Shi, X. Li, X. Dong, Y. Yu, Sol–gel synthesis
of TiO2 nanoparticles and photocatalytic degradation of methyl
orange in aqueous TiO2 suspensions, J. Alloys Compd., 413
(2006) 302–306.
- N. Chaibakhsh, N. Ahmadi, M.A. Zanjanchi, Optimization
of photocatalytic degradation of neutral red dye using TiO2
nanocatalyst via Box–Behnken design, Desal. Water Treat.,
57 (2016) 9296–9306.
- A.R. Johnsen, L.Y. Wick, H. Harms, Principles of microbial
PAH-degradation in soil, Environ. Pollut., 133 (2005) 71–84.
- B. Pare, P. Singh, S. Jonnalagadda, Visible light-driven
photocatalytic degradation and mineralization of neutral red
dye in a slurry photoreactor, Indian J. Chem., 17 (2010) 391–395.
- M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and
magnetic removal of neutral red dye from aqueous solution
using Fe3O4 hollow nanospheres, J. Hazard. Mater., 181 (2010)
1039–1050.
- B. Sarwan, B. Pare, A.D. Acharya, S.B. Jonnalagadda,
Mineralization and toxicity reduction of textile dye neutral red
in aqueous phase using BiOCl photocatalysis, J. Photochem.
Photobiol., B, 116 (2012) 48–55.
- M.M. Alnuaimi, M.A. Rauf, S.S. Ashraf, Comparative
decoloration study of neutral red by different oxidative
processes, Dyes Pigm., 72 (2007) 367–371.
- X.-Z. Ding, Z.-Z. Qi, Y.-Z. He, Effect of hydrolysis water on the
preparation of nano-crystalline titania powders via a sol–gel
process, J. Mater. Sci. Lett., 14 (1995) 21–22.
- Y. Fang, J. Fu, P. Liu, B. Cu, Morphology and characteristics
of 3D nanonetwork porous starch-based nanomaterial via
a simple sacrifice template approach for clove essential
oil encapsulation, Ind. Crops Prod., 143 (2020) 111939,
doi: 10.1016/j.indcrop.2019.111939.
- M.M. Ahmad, S. Mushtaq, H. Al Qahtani, A. Sedky, M. Alam,
Investigation of TiO2 nanoparticles synthesized by sol–gel
method for effectual photodegradation, oxidation and reduction
reaction, Crystals, 11 (2021) 1456, doi: 10.3390/cryst11121456.
- S. Abbad, K. Guergouri, S. Gazaout, S. Djebabra, A. Zertal,
R. Barille, M. Zaabat, Effect of silver doping on the photocatalytic
activity of TiO2 nanopowders synthesized by the sol–gel
route, J. Environ. Chem. Eng., 8 (2020) 103718, doi: 10.1016/j.jece.2020.103718.
- D. Komaraiah, E. Radha, N. Kalarikkal, J. Sivakumar,
M.V. Ramana Reddy, R. Sayanna, Structural, optical and
photoluminescence studies of sol–gel synthesized pure and iron
doped TiO2 photocatalysts, Ceram. Int., 45 (2019) 25060–25068.
- Y. Quintero, E. Mosquera, J. Diosa, A. García, Ultrasonic-assisted
sol–gel synthesis of TiO2 nanostructures: influence of synthesis
parameters on morphology, crystallinity, and photocatalytic
performance, J. Sol-Gel Sci. Technol., 94 (2020) 477–485.
- X. Chen, S. Mao, Titanium dioxide nanomaterials: synthesis,
properties, modifications, and applications, Chem. Rev., 107
(2007) 2891–2959.
- H.-J. Park, J.Y. Kim, J. Kim, J.-H. Lee, J.-S. Hahn, M.B. Gu,
J. Yoon, Silver-ion-mediated reactive oxygen species generation
affecting bactericidal activity, Water Res., 43 (2009) 1027–1032.
- G.L. Newton, J.R. Milligan, Fluorescence detection of hydroxyl
radicals, Radiat. Phys. Chem., 75 (2006) 473–478.
- K. Kawasaki, Y. Kamagata, Phosphate-catalyzed hydrogen
peroxide formation from agar, gellan,
and κ-carrageenan and
recovery of microbial cultivability via catalase and pyruvate,
Appl. Environ. Microbiol., 83 (2017) e01366, doi: 10.1128/AEM.01366-17.
- M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, Photocatalytic
degradation of methylene blue dye using Fe2O3/TiO2
nanoparticles prepared by sol–gel method, J. Alloys Compd.,
553 (2013) 19–29.
- S.L.N. Zulmajdi, N.I.I. Zamri, A.H. Mahadi, M.Y.H. Rosli,
F. Ja’afar, H.M. Yasin, E. Kusrini, J. Hobley, A. Usman, Sol–gel
preparation of different crystalline phases of TiO2 nanoparticles
for photocatalytic degradation of methylene blue in aqueous
solution, Am. J. Nanomater., 7 (2019) 39–45.
- B.H. Toby, R factors in Rietveld analysis: how good is good
enough?, Powder Diffr., 21 (2006) 67–70.
- N.S. Allen, N. Mahdjoub, V. Vishnyakov, P.J. Kelly, R.J. Kriek,
The effect of crystalline phase (anatase, brookite and rutile)
and size on the photocatalytic activity of calcined polymorphic
titanium dioxide (TiO2), Polym. Degrad. Stab., 150 (2018) 31–36.
- T.A. Kandiel, L. Robben, A. Alkaim, D. Bahnemann, Brookite
versus anatase TiO2 photocatalysts: phase transformations and
photocatalytic activities, Photochem. Photobiol. Sci., 12 (2013)
602–609.
- W. Nachit, H. Ait Ahsaine, Z. Ramzi, S. Touhtouh,
I. Goncharova, K. Benkhouja, Photocatalytic activity of anatasebrookite
TiO2 nanoparticles synthesized by sol–gel method
at low temperature, Opt. Mater. (Amst.), 129 (2022) 112256,
doi: 10.1016/j.optmat.2022.112256.
- K.V. Baiju, S. Shukla, K.S. Sandhya, J. James, K.G.K. Warrier,
Photocatalytic activity of sol–gel-derived nanocrystalline
titania, J. Phys. Chem. C, 111 (2007) 7612–7622.
- M.C. Ceballos-Chuc, C.M. Ramos-Castillo, M. Rodríguez-Pérez,
M.Á. Ruiz-Gómez, G. Rodríguez-Gattorno, J. Villanueva-Cab,
Synergistic correlation in the colloidal properties of TiO2
nanoparticles and its impact on the photocatalytic activity,
Inorganics, 10 (2022) 125, doi: 10.3390/inorganics10090125.
- D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, Effects
of particle size on the structure and photocatalytic performance
by alkali-treated TiO2, J. Nanomater., 10 (2020) 546,
doi: 10.3390/nano10030546.
- S.K. Haram, B.M. Quinn, A.J. Bard, Electrochemistry of CdS
nanoparticles: a correlation between optical and electrochemical
bandgaps, J. Am. Chem. Soc., 123 (2001) 8860–8861.
- R. Fernández-Climent, S. Giménez, M. García-Tecedor, The role
of oxygen vacancies in water splitting photoanodes, Sustainable
Energy Fuels, 4 (2020) 5916–5926.
- B. Plešngerová, G. Sučik, M. Maryška, D. Horkavcova,
Hydroxyapatite coatings deposited from alcohol suspensions
by electrophoretic deposition on titanium substrate, Ceram.
Silik., 51 (2007) 15–23.
- K. Kato, Y. Uemura, K. Asakura, A. Yamakata, Role of oxygen
vacancy in the photocarrier dynamics of WO3 photocatalysts:
the case of recombination centers, J. Phys. Chem. C, 126 (2022)
9257–9263.
- N. Ali, A. Said, F. Ali, F. Raziq, Z. Ali, M. Bilal, L. Reinert,
T. Begum, H.M.N. Iqbal, Photocatalytic degradation of
Congo red dye from aqueous environment using cobalt
ferrite nanostructures: development, characterization, and
photocatalytic performance, Water Air Soil Pollut., 231 (2020)
50,
doi: 10.1007/s11270-020-4410-8.
- M.F. Hanafi, N. Sapawe, Effect of initial concentration on the
photocatalytic degradation of Remazol Brilliant Blue dye using
nickel catalyst, Mater. Today Proc., 31 (2020) 318–320.
- J. Chen, Y. Xiong, M. Duan, X. Li, S. Fang, S. Qin, R. Zhang,
Insight into the synergistic effect of adsorption–photocatalysis
for the removal of organic dye pollutants by Cr-doped ZnO,
Langmuir, 36 (2020) 520–533.
- H. Qian, Q. Hou, E. Duan, J. Niu, Y. Nie, C. Bai, X. Bai,
M. Ju, Honeycombed Au@C-TiO2–X catalysts for enhanced
photocatalytic mineralization of Acid red 3R under visible
light, J. Hazard. Mater., 391 (2020) 122246, doi: 10.1016/j.jhazmat.2020.122246.
- B. Ghasemi, B. Anvaripour, S. Jorfi, N. Jaafarzadeh, Enhanced
photocatalytic degradation and mineralization of furfural
using UVC/TiO2/GAC composite in aqueous solution, Int. J.
Photoenergy, 2016 (2016) 2782607, doi: 10.1155/2016/2782607.
- J. Rodrigues, T. Hatami, J.M. Rosa, E.B. Tambourgi,
Photocatalytic degradation of Reactive Blue 21 dye using ZnO
nanoparticles: experiment, modelling, and sensitivity analysis,
Environ. Technol., 42 (2021) 3675–3687.
- I.D. Rettig, T.M. McCormick, Enrolling reactive oxygen species
in photon-to-chemical energy conversion: fundamentals,
technological advances, and applications, Adv. Phys.: X,
6 (2021) 1950049, doi: 10.1080/23746149.2021.1950049.