References

  1. Revised EU Drinking Water Directive (EU) 2020/2184 from Dec 16th 2020 r.
  2. Regulation of the Ministry of Health from Dec 7th 2017 r. on Drinking Water (Dz.U. 2017 poz. 2294).
  3. B.R. Hacker, S.M. Peacock, G.A. Abers, S.D. Holloway, Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, J. Geophys. Res., 108 (2003), doi: 10.1029/2001JB001129.
  4. M. Dudziak, D. Kopańska, Occurrence of heavy metals in selected made grounds, Ecol. Chem. Eng. A, 22 (2015) 137–149.
  5. T. Walczykiewicz, Water Resources and Their Use, M. Cygler, R. Miłaszewski, Eds., Materials to Economics Study and Water Resources, Economy & Environment, Bialystok, 2008, pp. 11–21.
  6. M. Włodarczyk-Makuła, A. Nowacka, B. Macherzyński, Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants, Desal. Water Treat., 52 (2014) 3843–3851.
  7. S. Myszograj, Z. Sadecka, Realization of national programme of municipal wastewater treatment and the quality of surface water in Poland. Medycyna Środowiskowa, 15 (2012) 97–105.
  8. I. Skoczko, J. Piekutin, K. Ignatowicz, Efficiency of manganese removal from water in selected filter beds, Desal. Water Treat., 57 (2016) 1611–1619.
  9. E. Wiśniowska, M. Włodarczyk-Makuła, Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/precipitation process, Arch. Environ. Prot., 46 (2020) 22–29.
  10. UN-Water Strategy 2014–2020 from May 8th 2014.
  11. UN-Water 2030 Strategy from July 1st 2020.
  12. T. Cichoń, J. Królikowska, Protection of water resources for sustainable development, Desal. Water Treat., 128 (2018) 442–449.
  13. K. Szymański, B. Janowska, A. Iżewska, R. Sidełko, I. Siebielska, Method of evaluating the impact of landfill leachate on groundwater quality, Environ. Monit. Assess., 190 (2018) 415, doi: 10.1007/s10661-018-6776-2.
  14. I. Skoczko, J. Piekutin, A. Roszczenko, Iron and manganese removal from groundwater by filtration on selected masses, Annu. Set. Environ. Prot., 17 (2015) 1587–1608.
  15. M. Król, M. Dudziak, Occurrence and determination of selected micropollutants in water environment regulated by directive 2000/60/WE, Ecol. Eng. Environ. Technol., 19 (2018) 38–47.
  16. P.E. van Keken, B. Kiefer, S.M. Peacock, High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem. Geophys. Geosyst., 3 (2002) 1 of 20–20 of 20, doi: 10.1029/2001GC000256.
  17. B. Das, P. Hazarika, H. Kalita, D.C. Goswami, H.B. Das, S.N. Dube, R.K. Dutta, Removal of iron from groundwater by ash: a systematic study of traditional methods, J. Hazard. Mater., 141 (2006) 834–841.
  18. R.M. Canup, K. Righter, Origin of the Earth and Moon, University of Arizona Press, Tucson, AZ, 2000.
  19. M.J. Adelman, M.L. Weber-Shirk, A.N. Cordero, S.L. Coffey, W.J. Maher, D. Guelig, J.C. Will, S.C. Stodter, M.W. Hurst, L.W. Lion, Stacked filters: novel approach to rapid sand filtration, J. Environ. Eng., 138 (2012) 1–17.
  20. G.S. Longsdon, Water Filtration Practices: Including Slow Sand Filters and Precoat Filtration, American Water Works Association, 2008.
  21. S. Environmental Protection Agency Office of Water: Drinking Water Health Advisory for Manganese, 2004.
  22. J.H. Bruins, B. Petrusevski, Y.M. Slokar, K. Huysman, K. Joris, J.C. Kruithof, M.D. Kennedy, Factors controlling the ripening of manganese removal filters in conventional aeration-filtration groundwater treatment, Desal. Water Treat., 72 (2017) 22–29.
  23. E. Kudlek, Decomposition of contaminants of emerging concern in advanced oxidation processes, Water, 10 (2018) 955, doi: 10.3390/w10070955.
  24. W. Tang, L. Wu, J. Gong, G. Ye, X. Zeng, Screening, identification, and removal dynamics of a novel
    iron-manganese removal strain, Bio-Med. Mater. Eng., 24 (2014) 2049–2056.
  25. A.M. Anielak, M. Arendacz, Efficiency of iron and manganese removal from the water, Annu. Set Environ. Prot., 9 (2007) 9–18.
  26. S.J. Duranceau, V.M. Trupiano, Evaluation of oxidized media filtration for removing sulfides from groundwater, Desal. Water Treat., 28 (2011) 366–377.
  27. A. Biswal, B.C. Tripathy, K. Sanjay, K. Subbaiah, M. Minakshi, Electrolytic manganese dioxide (EMD):
    a perspective on worldwide production, reserves and its role in electrochemistry, RSC Adv., 5 (2015) 58255–58283.
  28. R. Munter, P. Overbeck, J. Sutt, Which is the best oxidant for complexed iron removal from groundwater:
    The Kogalym case, Ozone: Sci. Eng., 30 (2008) 73–80.
  29. H. Zeng, Y. Yu, T. Qiao, J. Zhang, D. Li, Simultaneous removal of iron, manganese and ammonia from groundwater: upgrading of waterworks in northeast China, Desal. Water Treat., 175 (2020) 196–204.
  30. J. Kaleta, A. Puszkarewicz, D. Papciak, Removal of iron, manganese and nitrogen compounds from underground waters with diverse physical and chemical characteristics, Environ. Prot. Eng., 33 (2007) 5–13.
  31. M. Dudziak, E. Kudlek, E. Burdzik-Niemiec, Decomposition of micropollutants and changes in the toxicity of water matrices subjected to various oxidation processes, Desal. Water Treat., 117 (2018) 181–187.
  32. I. Skoczko, Water Filtration, PAN Ed., Warsaw, 2019.
  33. A. Karami, K. Karimyan, R. Davoodi, M. Karimaei, K. Sharafie, S. Rahimi, T. Khosravi, M. Miri, H. Sharafi, A. Azari, Ali, Application of response surface methodology for statistical analysis, modelling, and optimization of malachite green removal from aqueous solutions by manganese-modified pumice adsorbent, Desal. Water Treat., 89 (2017) 150–161.
  34. A. Azari, A. Babaie, R. Rezaei-Kalantary, A. Esrafili, M. Moazzen, B. Kakavandi, Nitrate removal from aqueous solution by carbon nanotubes magnetized with nano zero-valent iron, J. Mazandaran Univ. Med. Sci., 22 (2013) 15–27.
  35. X. Cai, F. Shen, Y. Zhang, H. Hu, Z. Huang, Y. Yin, J. Liang, Mineralization of organics in hazardous waste sulfuric acid by heiral manganese oxide ore and a combined MnO2/activated carbon treatment to produce qualified manganese sulfate, J. Hazard. Mater., 366 (2019) 466–474.
  36. L.A. Lima, Y.F. Silva, P.L.T. Lima, Iron removal efficiency in irrigation water by a zeolite added to sand media filters, Desal. Water Treat., 220 (2021) 241–245.
  37. V.J. Inglezakis, M.K. Doula, V. Aggelatou, A.A. Zorpas, Removal of iron and manganese from underground water by use of natural minerals in batch mode treatment, Desal. Water Treat., 18 (2010) 341–346.
  38. A.J. Adelman, M.L. Weber, P. Shirk, N.C. Anderson, S. Coffey, Stacked filters: novel approach to rapid sand filtration, J. Environ. Eng., 138 (2012) 1–17.
  39. I. Skoczko, Efficiency estimation of water purification with various filtration materials, Desal. Water Treat., 134 (2018) 99–108.
  40. P. Phatai, L. Wittayakun, N. Grisdanurak, W.H. Chen, M.W. Wan, C.C. Kan, Removal of manganese ions from synthetic groundwater by oxidation using KMnO4 and the characterization of produced MnO2 particles, Water Sci. Technol., 62 (2010) 1719–1726.
  41. J. Jeż-Walkowiak, Z. Dymaczewski, L. Weber, Iron and manganese removal from groundwater by filtration through a chalcedonite bed, J. Water Supply Res. Technol. AQUA, 64 (2015) 19–34.
  42. Y. Veressinina, M. Trapido, V. Ahelik, R. Munter, Catalytic Filtration for the Improvement of Drinking Water Quality, Proceedings of the Estonian Academy of Sciences, Chemistry, 2000, pp. 168–179.
  43. D. Barlokova, J. Ilavski, Removal of iron and manganese from water using filtration by natural materials, Pol. J. Environ. Stud., 19 (2010) 1117–1122.
  44. D.Q. Truong, P. Loganathan, L.M. Tran, Removing ammonium from contaminated water using Purolite C100E: batch, column, and household filter studies, Environ. Sci. Pollut. Res., 29 (2022) 16959–16972.
  45. R.G. Aghoyeh, H. Khalafi, Design of dual column water purification system for industrial gamma irradiator based of PUROLITE® resins, Ann. Nucl. Energy, 69 (2014) 90–96.
  46. S.H. Christopherson, J.L. Anderson, D.M. Gustafson, Evaluation of recirculating sand filter in a cold climate, Water Sci. Technol., 51 (2005) 267–272.
  47. N. Petkov, M. Holzl, T.H. Metzger, S. Mintova, T. Bein, Ordered micro/mesoporous composite prepared as thin films, J. Phys. Chem. B, 109 (2005) 4485–4491.
  48. E. Szatyłowicz, I. Skoczko, Studies on the efficiency of groundwater treatment process with adsorption on activated alumina, J. Ecol. Eng., 18 (2017) 211–218.
  49. Y.S. Tao, H. Kanoh, K. Kaneko, ZSM-5 monolith of uniform mesoporous channels, J. Am. Chem. Soc., 125 (2003) 6044–6045.
  50. M.M. Michel, I. Reczek, D. Papciak, M. Włodarczyk-Makuła, T. Siwiec, Y. Trach, Mineral materials coated with and consisting of MnOx—characteristics and application of filter media for groundwater treatment: a review, Materials, 13 (2020) 2232, doi: 10.3390/ma13102232.
  51. A.M. García-Mendieta, M. Solache-Ríos, M.T. Olguín, Evaluation of the sorption properties of a Mexican clinoptiloliterich tuff for iron, manganese and iron–manganese systems, Microporous Mesoporous Mater., 118 (2009) 489–495.
  52. A. Azari, M.H. Mahmoudian, M. Hazrati Niari, I. Eş, E. Dehganifard, A. Kiani, A. Javid, H. Azari, Y. Fakhri, A.M. Khaneghah, Rapid and efficient ultrasonic assisted adsorption of diethyl phthalate onto
    FeIIFe2IIIO4@GO: ANN-GA and RSM-DF modeling, isotherm, kinetic and mechanism study, Microchem. J., 150 (2019) 104144, doi: 10.1016/j. microc.2019.104144.
  53. J. Dinn, J.L. Liu, S. Bashir, Use of natural products as green reducing agents to fabricate highly effective nanodisinfectants, J. Agric. Food Chem., 61 (2013) 2019–2027.
  54. S. Chong, C.W. Lai, S.B.A. Hamid, Green preparation of reduced graphene oxide using a natural reducing agent, Ceram. Int., 41 (2015) 9505–9513.
  55. Y. Wang, S. Indrawirawan, X. Duan, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures, Chem. Eng. J., 266 (2015) 12–20.
  56. D.J. Tarimo, K.O. Oyedotun, A.A. Mirghni, N.F. Sylla, N. Manyala, High energy and excellent stability asymmetric supercapacitor derived from sulphur-reduced graphene oxide/manganese dioxide composite and activated carbon from peanut shell, Electrochim. Acta, 353 (2020) 136498, doi: 10.1016/j.electacta.2020.136498.
  57. P. Duffy, L.A. Reynolds, S.E. Sanders, K.M. Metz, P. Colavita, Natural reducing agents for electroless nanoparticle deposition: mild synthesis of metal/carbon nanostructured microspheres, Mater. Chem. Phys., 140 (2013) 343–349.
  58. C.X. Li, H. Zhong, S. Wang, Preparation of MnO2 and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties, J. Cent. South Univ., 22 (2015) 2493–2502.
  59. Patent CN103556172A Method for Deeply Removing Impurities of Manganese Dioxide Electrolyte, 2013.
  60. J. Wang, B. Peng, L. Chai, Q. Zhang, Q. Liu, Preparation of electrolytic manganese residue–ground granulated blast furnace slag cement, Powder Technol., 241 (2013) 12–18.
  61. Mahmudi, W. Widiyastuti, P. Nurlilasari, S. Affandi, H. Setiawan, Electrolysis synthesis of MnO2 in acidic environment and its electrochemical performance for supercapacitor, J. Phys.: Conf. Ser., 1093 (2018) 012021, doi: 10.1088/1742-6596/1093/1/012021.