References

  1. L. Benameur, L. Wei, A. Botta, In: B. Bhushan, Ed., Encyclopedia of Nanotechnology, Springer, Dordrecht, 2012, pp. 952–962.
  2. I. Lopes, R. Ribeiro, F.E. Antunes, T.A.P. Rocha-Santos, M.G. Rasteiro, A.M.V.M. Soares, F. Gonçalves, R. Pereira, Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium, Ecotoxicology, 21 (2012) 637–648.
  3. J.P. Wise, B.C. Goodale, S.S. Wise, G.A. Craig, A.F. Pongan, R.B. Walter, W.D. Thompson, A. Ng, A. Aboueissa, H. Mitani, M.J. Spalding, M.D. Mason, Silver nanospheres are cytotoxic and genotoxic to fish cells, Aquat. Toxicol., 97 (2010) 34–41.
  4. N. Nikdehghan, H. Kashiri, A.H. Ali, CuO nanoparticlesinduced micronuclei and DNA damage in Cyprinus carpio, AACL Bioflux, 11 (2018) 925–936.
  5. E. Prato, A. Fabbrocini, G. Libralato, L. Migliore, I. Parlapiano, R. D’Adamo, A. Rotini, L. Manfra, G. Lofrano, F. Carraturo, M. Trifuoggi, F. Biandolino, Comparative toxicity of ionic and nanoparticulate zinc in the species Cymodoce truncata, Gammarus aequicauda and Paracentrotus lividus, Environ. Sci. Pollut. Res., 28 (2021) 42891–42900.
  6. S. Zhang, K. Yi, A. Chen, J. Shao, L. Peng, S. Luo, Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review, Ecotoxicology, 31 (2022) 873–883.
  7. Z. Liu, C.R. Malinowski, M.S. Sepúlveda, Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism, Chemosphere, 291 (2021) 132941, doi: 10.1016/j.chemosphere.2021.132941.
  8. H.-J. Ahn, Y. Ahn, M.B. Kurade, S.M. Patil, G.-S. Ha, P.O. Bankole, M.A. Khan, S.W. Chang, M.H. Abdellattif, K.K. Yadav, B.-H. Jeon, The comprehensive effects of aluminum oxide nanoparticles on the physiology of freshwater microalga Scenedesmus obliquus and it’s phycoremediation performance for the removal of sulfacetamide, Environ. Res., 215 (2022) 114314, doi: 10.1016/j.envres.2022.114314.
  9. M. Załęska-Radziwiłł, N. Doskocz, K. Affek, A. Muszyński, Effect of aluminum oxide nanoparticles on aquatic organisms – a microcosm, study, Desal. Water Treat., 195 (2020) 286–296.
  10. N. Doskocz, M. Załęska-Radziwiłł, K. Affek, Ecotoxicity of selected nanoparticles in relation to micro-organisms in the water ecosystem, Desal. Water Treat., 186 (2020) 50–55.
  11. N. Doskocz. M. Załęska-Radziwiłł., K. Affek., M. Łebkowska, Effects of selected nanoparticles on aquatic plants, Desal. Water Treat., 117 (2018) 42–48.
  12. M.T. Botelho, M.J. de A.R. Campos Passos, T.H. Trevizani, R.C. Lopes Figueira, G. de A. Umbuzeiro, V. Gomes, Genotoxic effects of silver nanoparticles on a tropical marine amphipod via feeding exposure, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 8 (2022) 503527, doi: 10.1016/j.mrgentox.2022.503527.
  13. E. Demir, G. Vales, B. Kaya, A. Creus, R. Marcos, Genotoxic analysis of silver nanoparticles in Drosophila, Nanotoxicology, 5 (2011) 417–424.
  14. H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, M.A. Mahjoub, M. Koohiyan, A. Ahmadi, A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing?, Medicina (Kaunas), 55 (2019) 439, doi: 10.3390/medicina55080439.
  15. M. Załęska-Radziwiłł, K. Affek, N. Doskocz, A. Affek, In vitro and in vivo genotoxicity assessment of selected pharmaceuticals in relation to Escherichia coli and Cyprinus carpio, J. Environ. Sci. Health A, 51 (2016) 1053–1061.
  16. T. Ohe, T. Watanabe, K. Wakabayashi, Mutagens in surface waters: a review, Mutat. Res., 567 (2004) 109–149.
  17. L. Xie, Y. Sapozhnikova, O. Bawardi, D. Schlenk, Evaluation of wetland and tertiary wastewater treatments for estrogenicity using in vivo and in vitro assays, Arch. Environ. Contam. Toxicol., 48 (2004) 81–86.
  18. L. Li, Y. Deng, X. Meng, H. Chang, C. Ling, D. Li, Q. Wang, T. Lu, Y. Yang, G. Song, Y. Hu, Genotoxicity evaluation of silica nanoparticles in murine: a systematic review and meta-analysis, Toxicol. Mech. Methods, 32 (2022) 1–17.
  19. Y. Kohl, E. Rundén-Pran, E. Mariussen, M. Hesler, N. El Yamani, E.M. Longhin, M. Dusinska, Genotoxicity of nanomaterials: advanced in vitro models and high throughput methods for human hazard assessment-a review, Nanomaterials (Basel), 10 (2020) 1911, doi: 10.3390/nano10101911.
  20. X. Guo, Y. Li, J. Yan, T. Ingle, M.Y. Jones, N. Mei, M.D. Boudreau, C.K. Cunningham, M. Abbas, A.M. Paredes, T. Zhou, M.M. Moore, P.C. Howard, T. Chen, Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays, Nanotoxicology, 10 (2016) 1373–1384.
  21. M. Ghosh, M. Bandyopadhyay, A. Mukherjee, Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes, Chemosphere, 81 (2010) 1253–1262.
  22. M. Güneş, B. Yalçın, M. Muddassir Ali, İ.H. Ciğerci, B. Kaya, Affiliations expand genotoxic assessment of cerium and magnesium nanoparticles and their ionic forms in Eisenia hortensis coelomocytes by alkaline comet assay, Microsc. Res. Tech., 85 (2022) 3095–3103.
  23. J. Gopalraaj, M. Pappuswamy, M. Arun, B. Balamuralikrishnan, A.V. Anand, Toxic effects of nanoparticles on fish embryos, Res. J. Biotechnol., 16 (2021) 140–149.
  24. M. Auffan, J. Rose, M.R. Wiesner, J.Y. Bottero, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro, Environ. Pollut., 157 (2009) 1127–1133.
  25. A. Scherzad, T. Meyer, N. Kleinsasser, S. Hackenberg, Molecular mechanisms of zinc oxide
    nanoparticle-induced genotoxicity short running title: genotoxicity of ZnO NPs, Materials (Basel), 10 (2017) 1427, doi: 10.3390/ma10121427.
  26. C.M. Sayes, J.D. Fortner, W. Guo, D. Lyon, A.M. Boyd, K.D. Ausman, Y.J. Tao, B. Sitharaman, L.J. Wilson, J.B. Hughes, J.L. West, V.L. Colvin, The differential cytotoxicity of watersoluble fullerenes, Nano Lett., 4 (2004) 1881–1887.
  27. C.M. Goodman, C.D. McCusker, T. Yilmaz. V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains, Bioconjugate Chem., 15 (2004) 897–900.
  28. V. Kononenko, N. Repar, N. Marušič, B. Drašler, T. Romih, S. Hočevar, D. Drobne, Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: size matters, Toxicol. in Vitro, 40 (2017) 256–263.
  29. J.A. Rodríguez, M. Fernández-García, Eds., Synthesis, Properties, and Applications of Oxide Nanomaterials, John Wiley and Sons, New Jersey, 2008.
  30. EBPI (Environmental Bio Detection Products Inc.), Instructions for Use, The SOS-Chromotest Kit Version 6.0, Ontario, Canada, 1992.
  31. R. Legault, C. Blaise, D. Rokosk. R. Chong-Kit, Comparative assessment of the SOS Chromotest kit and the Mutatox test with the Salmonella plate incorporation (Ames test) and fluctuation tests for screening genotoxic agents, Environ. Toxicol. Water, 9 (1994) 45–57.
  32. G.H.S. Strauss, Non-random cell killing in cryopreservation: implications for performance of the battery of leukocyte tests (BLT), I. Toxic and immunotoxic effects, Mutat. Res., 252 (1991) 1–15.
  33. N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell. Res., 175 (1988) 184–191.
  34. R. Liman, B. Başbuğ, M.M. Ali, Y. Acikbas, H. Ciğerci, Cytotoxic and genotoxic assessment of tungsten oxide nanoparticles in Allium cepa cells by Allium ana-telophase and comet assays, J. Appl. Genet., 62 (2021) 85–92.
  35. S. Aziz, S. Abdullah, H. Anwar, F. Latif, DNA damage and oxidative stress in economically important fish, bighead carp (Hypophthalmichthys nobilis) exposed to engineered copper oxide nanoparticles, Pak. Vet. J., 42 (2022) 1–8.
  36. N.A.L. Flower, B. Brabu, M. Revathy, C. Gopalakrishnan, S.V.K. Raja, S.S. Murugan, T.S. Kumaravel, Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay, Mutat. Res., 742 (2012) 61–65.
  37. Resolution European Parliament on Regulatory Aspects of Nanomaterials (2008/2208(INI)), European Parliament, Brussels, Belgium, 2009.
  38. M. Martins, P.M. Costa, In: M.L. Larramendy, Ed., Ecotoxicology and Genotoxicology: Non-Traditional Aquatic Models, The Royal Society of Chemistry, Cambridge, 2017, pp. 1–32.
  39. J. Catalán, S. Suhonen, A. Huk, M. Dusinska, In: L.M. Sierra, L. Gaivão, Eds., Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology, Humana Press, New York, 2014, pp. 241–268.
  40. Z.A. Hassan, H.H. Obaid, M.N. al-Darraji, In vivo genotoxicity assessment of gold nanoparticles of different doses by comet assays, Indian J. Forensic Med. Toxicol., 14 (2020) 2414–2420.
  41. D. Ritter, J. Knebel, Genotoxicity testing in vitro – development of a higher throughput analysis method based on the comet assay, Toxicol. in Vitro, 23 (2009) 1570–1575.
  42. Y. Lu, Y. Liu, C. Yang, Evaluating in vitro DNA damage using comet assay, J. Vis. Exp., 11 (2007) 56450, doi: 10.3791/56450.
  43. K. Sunjog, S. Kolarević, K. Héberger, Z. Gačić, J. Knežević-Vukčević, B. Vuković-Gačić, M. Lenhardt, Comparison of comet assay parameters for estimation of genotoxicity by sum of ranking differences, Anal. Bioanal. Chem., 405 (2013) 4879–4885.
  44. T.S. Kumaravel, B. Vilhar, S.P. Faux, A.N. Jha, Comet assay measurements: a perspective, Cell Biol. Toxicol., 25 (2009) 53–64.
  45. L.P. Zakharenko, I.K. Zakharov, E.A. Vasiunina, T.V. Karamysheva, A.M. Danilenko, A.A. Nikiforov, Determination of the genotoxicity of fullerene C60 and fullerol using the method of somatic mosaics on cells of Drosophila melanogaster wing and SOS-chromotest, Genetika, 33 (1997) 405–409.
  46. S.H. Nam, S.W. Kim, Y.J. An, No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS Chromotest, J. Appl. Toxicol., 33 (2012) 1061–1069.
  47. H.A. Alhadrami, R.A.M. Shoudri, Titanium oxide (TiO2) nanoparticles for treatment of wound infection, J. Pure Appl. Microbiol., 15 (2021) 437–451.
  48. P.V. Vidya, K.C. Chitra, Evaluation of genetic damage in Oreochromis mossambicus exposed to selected nanoparticles by using micronucleus and comet bioassays, Croat. J. Fish., 76 (2018) 115–124.
  49. W.F. Vevers, A.N. Jha, Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro, Ecotoxicology, 7 (2008) 410–420.
  50. M. Naguib, I.A. Mekkawy, U.M. Mahmoud, A.E.H. Sayed, Genotoxic evaluation of silver nanoparticles in catfish Clarias gariepinus erythrocytes; DNA strand breakage using comet assay, Sci. Afr., 16 (2022) e01260, doi: 10.1016/j.sciaf.2022.e01260.
  51. K. Shahzad, M.N. Khan, F. Jabeen, N. Kosour, A.S. Chaudhry, M. Sohail, N. Ahmad, Toxicity of zinc oxide nanoparticles (ZnONPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity, Int. J. Environ. Sci. Technol., 16 (2019) 1973–1984.
  52. I. Nabiev, S. Mitchell, A. Davies, Y. Williams, D. Kelleher, R. Moore, Y.K. Gun’ko, S. Byrne, Y.P. Rakovich, J.F. Donegan, A. Sukhanova, J. Conroy, D. Cottell, N. Gaponik, A. Rogach, Y. Volkov, Non-functionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments, Nano Lett., 7 (2007) 3452–3461.
  53. P.A. White, J.B. Rasmussen, SOS Chromotest results in a broader context: empirical relationships between genotoxic potency, mutagenic potency, and carcinogenic potency, Environ. Mol. Mutagen., 27 (1996) 270–305.