References
- L. Benameur, L. Wei, A. Botta, In: B. Bhushan, Ed., Encyclopedia
of Nanotechnology, Springer, Dordrecht, 2012, pp. 952–962.
- I. Lopes, R. Ribeiro, F.E. Antunes, T.A.P. Rocha-Santos,
M.G. Rasteiro, A.M.V.M. Soares, F. Gonçalves, R. Pereira,
Toxicity and genotoxicity of organic and inorganic nanoparticles
to the bacteria Vibrio fischeri and Salmonella typhimurium,
Ecotoxicology, 21 (2012) 637–648.
- J.P. Wise, B.C. Goodale, S.S. Wise, G.A. Craig, A.F. Pongan,
R.B. Walter, W.D. Thompson, A. Ng, A. Aboueissa, H. Mitani,
M.J. Spalding, M.D. Mason, Silver nanospheres are cytotoxic
and genotoxic to fish cells, Aquat. Toxicol., 97 (2010) 34–41.
- N. Nikdehghan, H. Kashiri, A.H. Ali, CuO nanoparticlesinduced
micronuclei and DNA damage in Cyprinus carpio,
AACL Bioflux, 11 (2018) 925–936.
- E. Prato, A. Fabbrocini, G. Libralato, L. Migliore, I. Parlapiano,
R. D’Adamo, A. Rotini, L. Manfra, G. Lofrano, F. Carraturo,
M. Trifuoggi, F. Biandolino, Comparative toxicity of ionic and
nanoparticulate zinc in the species Cymodoce truncata, Gammarus
aequicauda and Paracentrotus lividus, Environ. Sci. Pollut. Res.,
28 (2021) 42891–42900.
- S. Zhang, K. Yi, A. Chen, J. Shao, L. Peng, S. Luo, Toxicity
of zero-valent iron nanoparticles to soil organisms and the
associated defense mechanisms: a review, Ecotoxicology,
31 (2022) 873–883.
- Z. Liu, C.R. Malinowski, M.S. Sepúlveda, Emerging trends
in nanoparticle toxicity and the significance of using Daphnia
as a model organism, Chemosphere, 291 (2021) 132941,
doi: 10.1016/j.chemosphere.2021.132941.
- H.-J. Ahn, Y. Ahn, M.B. Kurade, S.M. Patil, G.-S. Ha,
P.O. Bankole, M.A. Khan, S.W. Chang, M.H. Abdellattif,
K.K. Yadav, B.-H. Jeon, The comprehensive effects of aluminum
oxide nanoparticles on the physiology of freshwater
microalga Scenedesmus obliquus and it’s phycoremediation
performance for the removal of sulfacetamide, Environ. Res.,
215 (2022) 114314, doi: 10.1016/j.envres.2022.114314.
- M. Załęska-Radziwiłł, N. Doskocz, K. Affek, A. Muszyński,
Effect of aluminum oxide nanoparticles on aquatic organisms
– a microcosm, study, Desal. Water Treat., 195 (2020) 286–296.
- N. Doskocz, M. Załęska-Radziwiłł, K. Affek, Ecotoxicity of
selected nanoparticles in relation to micro-organisms in the
water ecosystem, Desal. Water Treat., 186 (2020) 50–55.
- N. Doskocz. M. Załęska-Radziwiłł., K. Affek., M. Łebkowska,
Effects of selected nanoparticles on aquatic plants, Desal. Water
Treat., 117 (2018) 42–48.
- M.T. Botelho, M.J. de A.R. Campos Passos, T.H. Trevizani,
R.C. Lopes Figueira, G. de A. Umbuzeiro, V. Gomes, Genotoxic
effects of silver nanoparticles on a tropical marine amphipod
via feeding exposure, Mutat. Res. Genet. Toxicol. Environ.
Mutagen., 8 (2022) 503527, doi: 10.1016/j.mrgentox.2022.503527.
- E. Demir, G. Vales, B. Kaya, A. Creus, R. Marcos, Genotoxic
analysis of silver nanoparticles in Drosophila, Nanotoxicology,
5 (2011) 417–424.
- H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi,
M.A. Mahjoub, M. Koohiyan, A. Ahmadi, A systematic review
of the genotoxicity and antigenotoxicity of biologically
synthesized metallic nanomaterials: are green nanoparticles
safe enough for clinical marketing?, Medicina (Kaunas),
55 (2019) 439, doi: 10.3390/medicina55080439.
- M. Załęska-Radziwiłł, K. Affek, N. Doskocz, A. Affek, In vitro
and in vivo genotoxicity assessment of selected pharmaceuticals
in relation to Escherichia coli and Cyprinus carpio, J. Environ. Sci.
Health A, 51 (2016) 1053–1061.
- T. Ohe, T. Watanabe, K. Wakabayashi, Mutagens in surface
waters: a review, Mutat. Res., 567 (2004) 109–149.
- L. Xie, Y. Sapozhnikova, O. Bawardi, D. Schlenk, Evaluation of
wetland and tertiary wastewater treatments for estrogenicity
using in vivo and in vitro assays, Arch. Environ. Contam.
Toxicol., 48 (2004) 81–86.
- L. Li, Y. Deng, X. Meng, H. Chang, C. Ling, D. Li, Q. Wang,
T. Lu, Y. Yang, G. Song, Y. Hu, Genotoxicity evaluation of silica
nanoparticles in murine: a systematic review and meta-analysis,
Toxicol. Mech. Methods, 32 (2022) 1–17.
- Y. Kohl, E. Rundén-Pran, E. Mariussen, M. Hesler, N. El Yamani,
E.M. Longhin, M. Dusinska, Genotoxicity of nanomaterials:
advanced in vitro models and high throughput methods for
human hazard assessment-a review, Nanomaterials (Basel),
10 (2020) 1911, doi: 10.3390/nano10101911.
- X. Guo, Y. Li, J. Yan, T. Ingle, M.Y. Jones, N. Mei, M.D. Boudreau,
C.K. Cunningham, M. Abbas, A.M. Paredes, T. Zhou,
M.M. Moore, P.C. Howard, T. Chen, Size- and coating-dependent
cytotoxicity and genotoxicity of silver nanoparticles
evaluated using in vitro standard assays, Nanotoxicology,
10 (2016) 1373–1384.
- M. Ghosh, M. Bandyopadhyay, A. Mukherjee, Genotoxicity
of titanium dioxide (TiO2) nanoparticles at two trophic levels:
plant and human lymphocytes, Chemosphere, 81 (2010)
1253–1262.
- M. Güneş, B. Yalçın, M. Muddassir Ali, İ.H. Ciğerci, B. Kaya,
Affiliations expand genotoxic assessment of cerium and
magnesium nanoparticles and their ionic forms in Eisenia
hortensis coelomocytes by alkaline comet assay, Microsc. Res.
Tech., 85 (2022) 3095–3103.
- J. Gopalraaj, M. Pappuswamy, M. Arun, B. Balamuralikrishnan,
A.V. Anand, Toxic effects of nanoparticles on fish embryos, Res.
J. Biotechnol., 16 (2021) 140–149.
- M. Auffan, J. Rose, M.R. Wiesner, J.Y. Bottero, Chemical
stability of metallic nanoparticles: a parameter controlling their
potential cellular toxicity in vitro, Environ. Pollut., 157 (2009)
1127–1133.
- A. Scherzad, T. Meyer, N. Kleinsasser, S. Hackenberg, Molecular
mechanisms of zinc oxide
nanoparticle-induced genotoxicity
short running title: genotoxicity of ZnO NPs, Materials (Basel),
10 (2017) 1427, doi: 10.3390/ma10121427.
- C.M. Sayes, J.D. Fortner, W. Guo, D. Lyon, A.M. Boyd,
K.D. Ausman, Y.J. Tao, B. Sitharaman, L.J. Wilson, J.B. Hughes,
J.L. West, V.L. Colvin, The differential cytotoxicity of watersoluble
fullerenes, Nano Lett., 4 (2004) 1881–1887.
- C.M. Goodman, C.D. McCusker, T. Yilmaz. V.M. Rotello,
Toxicity of gold nanoparticles functionalized with cationic and
anionic side chains, Bioconjugate Chem., 15 (2004) 897–900.
- V. Kononenko, N. Repar, N. Marušič, B. Drašler, T. Romih,
S. Hočevar, D. Drobne, Comparative in vitro genotoxicity
study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to
MDCK kidney cells: size matters, Toxicol. in Vitro, 40 (2017)
256–263.
- J.A. Rodríguez, M. Fernández-García, Eds., Synthesis,
Properties, and Applications of Oxide Nanomaterials, John
Wiley and Sons, New Jersey, 2008.
- EBPI (Environmental Bio Detection Products Inc.), Instructions
for Use, The SOS-Chromotest Kit Version 6.0, Ontario, Canada,
1992.
- R. Legault, C. Blaise, D. Rokosk. R. Chong-Kit, Comparative
assessment of the SOS Chromotest kit and the Mutatox test
with the Salmonella plate incorporation (Ames test) and
fluctuation tests for screening genotoxic agents, Environ.
Toxicol. Water, 9 (1994) 45–57.
- G.H.S. Strauss, Non-random cell killing in cryopreservation:
implications for performance of the battery of leukocyte tests
(BLT), I. Toxic and immunotoxic effects, Mutat. Res., 252 (1991)
1–15.
- N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple
technique for quantitation of low levels of DNA damage in
individual cells, Exp. Cell. Res., 175 (1988) 184–191.
- R. Liman, B. Başbuğ, M.M. Ali, Y. Acikbas, H. Ciğerci, Cytotoxic
and genotoxic assessment of tungsten oxide nanoparticles in
Allium cepa cells by Allium ana-telophase and comet assays,
J. Appl. Genet., 62 (2021) 85–92.
- S. Aziz, S. Abdullah, H. Anwar, F. Latif, DNA damage and
oxidative stress in economically important fish, bighead carp
(Hypophthalmichthys nobilis) exposed to engineered copper
oxide nanoparticles, Pak. Vet. J., 42 (2022) 1–8.
- N.A.L. Flower, B. Brabu, M. Revathy, C. Gopalakrishnan,
S.V.K. Raja, S.S. Murugan, T.S. Kumaravel, Characterization
of synthesized silver nanoparticles and assessment of its
genotoxicity potentials using the alkaline comet assay,
Mutat. Res., 742 (2012) 61–65.
- Resolution European Parliament on Regulatory Aspects
of Nanomaterials (2008/2208(INI)), European Parliament,
Brussels, Belgium, 2009.
- M. Martins, P.M. Costa, In: M.L. Larramendy, Ed., Ecotoxicology
and Genotoxicology: Non-Traditional Aquatic Models,
The Royal Society of Chemistry, Cambridge, 2017, pp. 1–32.
- J. Catalán, S. Suhonen, A. Huk, M. Dusinska, In: L.M. Sierra,
L. Gaivão, Eds., Genotoxicity and DNA Repair. Methods in
Pharmacology and Toxicology, Humana Press, New York, 2014,
pp. 241–268.
- Z.A. Hassan, H.H. Obaid, M.N. al-Darraji, In vivo genotoxicity
assessment of gold nanoparticles of different doses by comet
assays, Indian J. Forensic Med. Toxicol., 14 (2020) 2414–2420.
- D. Ritter, J. Knebel, Genotoxicity testing in vitro – development
of a higher throughput analysis method based on the comet
assay, Toxicol. in Vitro, 23 (2009) 1570–1575.
- Y. Lu, Y. Liu, C. Yang, Evaluating in vitro DNA damage using
comet assay, J. Vis. Exp., 11 (2007) 56450, doi: 10.3791/56450.
- K. Sunjog, S. Kolarević, K. Héberger, Z. Gačić, J. Knežević-Vukčević, B. Vuković-Gačić, M. Lenhardt, Comparison of comet
assay parameters for estimation of genotoxicity by sum of
ranking differences, Anal. Bioanal. Chem., 405 (2013) 4879–4885.
- T.S. Kumaravel, B. Vilhar, S.P. Faux, A.N. Jha, Comet assay
measurements: a perspective, Cell Biol. Toxicol., 25 (2009)
53–64.
- L.P. Zakharenko, I.K. Zakharov, E.A. Vasiunina, T.V. Karamysheva,
A.M. Danilenko, A.A. Nikiforov, Determination
of the
genotoxicity of fullerene C60 and fullerol using the method
of somatic mosaics on cells of Drosophila melanogaster wing
and SOS-chromotest, Genetika, 33 (1997) 405–409.
- S.H. Nam, S.W. Kim, Y.J. An, No evidence of the genotoxic
potential of gold, silver, zinc oxide and titanium dioxide
nanoparticles in the SOS Chromotest, J. Appl. Toxicol., 33 (2012)
1061–1069.
- H.A. Alhadrami, R.A.M. Shoudri, Titanium oxide (TiO2)
nanoparticles for treatment of wound infection, J. Pure Appl.
Microbiol., 15 (2021) 437–451.
- P.V. Vidya, K.C. Chitra, Evaluation of genetic damage in
Oreochromis mossambicus exposed to selected nanoparticles
by using micronucleus and comet bioassays, Croat. J. Fish.,
76 (2018) 115–124.
- W.F. Vevers, A.N. Jha, Genotoxic and cytotoxic potential of
titanium dioxide (TiO2) nanoparticles on fish cells in vitro,
Ecotoxicology, 7 (2008) 410–420.
- M. Naguib, I.A. Mekkawy, U.M. Mahmoud, A.E.H. Sayed,
Genotoxic evaluation of silver nanoparticles in catfish Clarias
gariepinus erythrocytes; DNA strand breakage using comet
assay, Sci. Afr., 16 (2022) e01260, doi: 10.1016/j.sciaf.2022.e01260.
- K. Shahzad, M.N. Khan, F. Jabeen, N. Kosour, A.S. Chaudhry,
M. Sohail, N. Ahmad, Toxicity of zinc oxide nanoparticles (ZnONPs)
in tilapia (Oreochromis mossambicus): tissue accumulation,
oxidative stress, histopathology and genotoxicity, Int. J.
Environ. Sci. Technol., 16 (2019) 1973–1984.
- I. Nabiev, S. Mitchell, A. Davies, Y. Williams, D. Kelleher,
R. Moore, Y.K. Gun’ko, S. Byrne, Y.P. Rakovich, J.F. Donegan,
A. Sukhanova, J. Conroy, D. Cottell, N. Gaponik, A. Rogach,
Y. Volkov, Non-functionalized nanocrystals can exploit a
cell’s active transport machinery delivering them to specific
nuclear and cytoplasmic compartments, Nano Lett., 7 (2007)
3452–3461.
- P.A. White, J.B. Rasmussen, SOS Chromotest results in a broader
context: empirical relationships between genotoxic potency,
mutagenic potency, and carcinogenic potency, Environ. Mol.
Mutagen., 27 (1996) 270–305.