References
- K. Venkataraman, Ed., The Chemistry of Synthetic Dyes, Vol. 5,
Academic Press, New York and London, 1971.
- R. Singh, Synthetic Dyes, Mittal Publications, New Delhi, 2002.
- A. Srinivasan, T. Viraraghavan, Decolorization of dye
wastewaters by biosorbents: a review, J. Environ. Manage.,
91 (2010) 1915–1929.
- C.A. Fewson, Biodegradation of xenobiotic and other persistent
compounds: the causes of recalcitrance, Trends Biotechnol.,
6 (1998) 148–153.
- K. Vikrant, B.S. Giri, N. Raza, K. Roy, K. Kim, B.N. Rai, R.S. Singh,
Recent advancements in bioremediation of dye: current status
and challenges, Bioresour. Technol., 253 (2018) 355–367.
- I.M. Banat, P. Nigam, D. Singh, R. Merchant, Microbial
decolorization of textile dye containing effluents: a review,
Bioresour. Technol., 58 (1996) 217–227.
- D.A. Giannakoudakis, A. Hosseini-Bandegharaei, P. Tsafrakidou,
K.S. Triantafyllidisa, M. Kornarosd, I. Anastopoulos, Aloe vera
waste biomass-based adsorbents for the removal of aquatic
pollutants: a review, J. Environ. Manage., 227 (2018) 354–364.
- S. Mishra, A. Maiti, The efficacy of bacterial species to
decolourise reactive azo, anthroquinone and triphenylmethane
dyes from wastewater: a review, Environ. Sci. Pollut. Res.,
25 (2018) 8286–8314.
- A. Kumar, H. Gupta, Activated carbon from sawdust for
naphthalene removal from contaminated water, Environ.
Technol. Innovation, 20 (2020) 101080, doi: 10.1016/j.
eti.2020.101080.
- S. Mishra, I. Cheng, A. Maiti, The utilization of agro-biomass/by-products for effective bio-removal of dyes from dyeing
wastewater: A comprehensive review, J. Environ. Chem. Eng.,
9 (2021) 104901, doi: 10.1016/j.jece.2020.104901.
- K. Pażdzior, L. Bilińska, S. Ledakowicz, A review of the existing
and emerging technologies in the combination of AOPs and
biological processes in industrial textile wastewater treatment,
Chem. Eng. J., 376 (2019) 120597, doi: 10.1016/j.cej.2018.12.057.
- Ü. Geçgel, O. Üner, G. Gökara, Y. Bayrak, Adsorption of cationic
dyes on activated carbon obtained from waste Elaeagnus
stone, Adsorpt. Sci. Technol., 34 (2016) 512–525.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interface Sci., 209 (2014) 172–184.
- M. Malovanyy, K. Petrushkа, I. Petrushka, Improvement of
adsorption-ion-exchange processes for waste and mine water
purification, Chem. Chem. Technol., 13 (2019) 372–376.
- O.S. Bello, K.A. Adegoke, A.A. Olaniyan, H. Abdulazeez, Dye
adsorption using biomass wastes and natural adsorbents:
overview and future prospects, Desal. Water Treat., 53 (2015)
1292–1315.
- I.M. Lima, A.A. Boateng, K.T. Klasson, Physicochemical and
adsorptive properties of fast-pyrolysis bio-chars and their
steam activated counterparts, J. Chem. Technol., 85 (2010)
1515–1521.
- X.-F. Tan, Y.-G. Liu, Y.-L. Gu, Y. Xu, G.-M. Zeng, X.-J. Hu,
S.-B. Liu, X. Wang, S.-M. Liu, J. Li, Biochar-based nanocomposites
for the decontamination of wastewater: a review,
Bioresour. Technol., 212 (2016) 318–333.
- X.-F. Tan, S.-B. Liu, Y.-G. Liu, Y.-L. Gu, G.-M. Zeng, X.-J. Hu,
X. Wang, S.-H. Liu, L.-H. Jiang, Biochar as potential sustainable
precursors for activated carbon production: multiple
applications in environmental protection and energy storage,
Bioresour. Technol., 227 (2017) 359–372.
- M. Ahmad, R.T. Bachmann, M.A. Khan, R.G.J. Edyvean,
U. Farooq, M.M. Athar, Dye removal using carbonized biomass,
isotherm and kinetic studies, Desal. Water Treat., 53 (2015)
2289–2298.
- I.I. Gerashchenko, Physicochemical aspects of therapeutic effect
of enterosorbents (theoretical research), Chem. Phys. Technol.
Surf., 9 (2018) 373–382.
- A. Krause, P. Kossyrev, M. Oljaca, S. Passerini, M. Winter,
A. Balducci, Electrochemical double layer capacitor and
lithium-ion capacitor based on carbon black, J. Power Sources,
196 (2011) 8836–8842.
- P. Ratajczak, K. Jurewicz, F. Béguin, Factors contributing to
ageing of high voltage carbon/carbon supercapacitors in salt
aqueous electrolyte, J. Appl. Electrochem., 44 (2014) 475–480.
- A.G. Berezhnaya, V.V. Chernyavina, A.L. Sinyavin,
Electrochemical parameters of supercapacitors on a neutral
aqueous electrolyte with various electrode materials,
Russ. J. Electrochem., 55 (2019) 802–806.
- I. Bordun, P. Chabecki, M. Malovanyy, T. Pieshkov, K. Chwastek,
Changes in the electrical charge accumulation ability of
nanoporous activated carbon under ultrasonic radiation
exposure, Isr. J. Chem., 60 (2020) 615–623.
- J. Rodriguez-Romero, I. Ruiz de Larramendi, E. Goikolea,
Nanostructured manganese dioxide for hybrid supercapacitor
electrodes, Batteries, 8 (2022) 263, doi: 10.3390/batteries8120263.
- T.D. Khokhlova, L.T. Hien, Adsorption of dyes on activated
carbon and graphitic thermal carbon black, Moscow Univ.
Chem. Bull., 62 (2007) 128–131.
- L.M. Soldatkina, E.V. Sagaidak, Kinetics of adsorption of watersoluble
dyes on activated carbons, J. Water Chem. Technol.,
32 (2010) 212–217.
- Z.C. Kadirova, K. Katsumata, T. Isobe, N. Matsushita,
A. Nakajima, K. Okada, Adsorption and photodegradation
of Methylene blue by iron oxide impregnated on granular
activated carbons in an oxalate solution, Appl. Surf. Sci.,
284 (2013) 72–79.
- S. Pohlmann, B. Lobato, T.A. Centeno, A. Balducci, The
influence of pore size and surface area of activated carbons on
the performance of ionic liquid based supercapacitors, Phys.
Chem. Chem. Phys., 15 (2013) 17287–17294.
- A.P. Baranov, G.V. Shteynberg, V.S. Bagotskiy, Study of the
hydrophobized active layer of a gas diffusion electrode,
Elektrohimiya, 7 (1971) 387–390.
- B. Bestani, N. Benderdouche, B. Bestaali, M. Belhakem,
А. Addou, Methylene blue and iodine adsorption onto an
activated desert plant, Bioresour. Technol., 99 (2008) 8441–8444.
- O. Paşka, R. Ianoş, C. Păcurariu, A. Brădeanu, Magnetic
nanopowder as effective adsorbent for the removal of Congo
red from aqueous solution, Water Sci. Technol., 69 (2013)
1234–1240.
- F. Raposo, M.A. de La Rubia, R. Borja, Methylene blue
number as useful indicator to evaluate the adsorptive capacity
of granular activated carbon in batch mode: influence of
adsorbate/adsorbent mass ratio and particle size, J. Hazard.
Mater., 165 (2009) 291–299.
- S. Mitra, M. Muttakin, K. Thu, B.B. Saha, Study on the influence
of adsorbent particle size and heat exchanger aspect ratio
on dynamic adsorption characteristics, Appl. Therm. Eng.,
133 (2018) 764–773.
- Y. Matsui, S. Nakao, A. Sakamoto, T. Taniguchi, L. Pan,
T. Matsushita, N. Shirasaki, Adsorption capacities of activated
carbons for geosmin and 2-methylisoborneol vary with
activated carbon particle size: effects of adsorbent and adsorbate
characteristics, Water Res., 85 (2015) 95–102.
- N. Saeidi, M.N. Lotfollahi, Effects of powder activated carbon
particle size on adsorption capacity and mechanical properties
of the semi activated carbon fiber, Fibers Polym., 16 (2015)
543–549.
- M. Thommes, K. Kaneko, A. Neimark, J. Rodriguez-Reinoso,
J. Rouquerol, K. Sing, Physisorption of gases, with special
reference to the evaluation of surface area and pore size
distribution (IUPAC Technical Report), Pure Appl. Chem.,
87 (2015) 1051–1069.
- J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K. Sing,
Adsorption by Powders and Porous Solids: Principles,
Methodology and Applications, Elsevier/Academic Press,
Oxford, 2014.
- S.V. Pahovchyshin, I.G. Chernych, V.F. Gritsenko, Some
restrictions on the use of the indicator method in studying the
surface of graphite particles, Colloid J. USSR, 3 (1991) 245–249.
- K.Y. Foo, B.H. Hameed, An overview of dye removal via
activated carbon adsorption process, Desal. Water Treat.,
19 (2010) 255–274.
- N. Bouchemal, F. Addoun, Adsorption of dyes from aqueous
solution onto activated carbons prepared from date pits: the
effect of adsorbents pore size distribution, Desal. Water Treat.,
7 (2009) 242–250.
- M. Szlachta, P. Wojtowicz, Adsorption of Methylene blue and
Congo red from aqueous solution by activated carbon and
carbon nanotubes, Water Sci. Technol., 68 (2013) 2240–2248.
- Z. Li, H. Hanafy, L. Zhang, L. Sellaoui, M.S. Netto,
M.L.S. Oliveira, M.K. Seliem, G.L. Dotto, A. Bonilla-Petriciolet,
Q. Li, Adsorption of Congo red and Methylene blue dyes on
an Ashitaba waste and a walnut shell-based activated carbon
from aqueous solutions: Experiments, characterization and
physical interpretations, Chem. Eng. J., 388 (2020) 124263,
doi: 10.1016/j.cej.2020.124263.
- Ch. Soloviy, M. Malovanyy, I. Bordun, F. Ivashchyshyn,
A. Borysiuk, Yu. Kulyk, Structural, magnetic and adsorption
characteristics of magnetically susceptible carbon sorbents
based on natural raw materials, J. Water Land Dev., 47 (2020)
160–168.
- V. Jr. Strelko, D. Malik, M. Streat, Characterisation of the surface
of oxidised carbon adsorbents, Carbon, 40 (2002) 95–104.
- M.J. de Souza, N.B. da Costa Júnior, L.E. Almeida, E.F. da
Silva Vieira, A.R. Cestari, I. de Fátima Gimenez, N.L. Villarreal
Carreno, L.S. Barreto, Kinetic and calorimetric study of the
adsorption of dyes on mesoporous activated carbon prepared
from coconut coir dust, J. Colloid Interface Sci., 298 (2006)
515–522.
- G.L. Dotto, J.M.N. Santos, I.L. Rodrigues, R. Rosa, F.A. Pavan,
E.C. Lima, Adsorption of Methylene blue by ultrasonic surface
modified chitin, J. Colloid Interface Sci., 446 (2015) 133–140.
- Q. Wu, H. Liang, M. Li, Hierarchically porous carbon
membranes derived from PAN and their selective adsorption of
organic dyes, Chin. J. Polym. Sci., 34 (2016) 23–33.
- R.W. Dapson, Amyloid from a histochemical perspective.
A review of the structure, properties and types of amyloid,
and a proposed staining mechanism for Congo red staining,
Biotech. Histochem., 93 (2018) 1–14.
- F. Güzel, Z. Tez, The characterization of the micropore
structures of some activated carbons of plant origin by N2 and
CO2 adsorptions, Sep. Sci. Technol., 28 (1993) 1609–1627.
- C.U. Pittman Jr., G.-R. He, B. Wu, S.D. Gardner, Chemical
modification of carbon fiber surfaces by nitric acid oxidation
followed by reaction with tetraethylenepentamine, Carbon,
35 (1997) 317–331.
- M.A. Hourieh, M.N. Alaya, A.M. Youssef, Carbon dioxide
adsorption and decolourizing power of activated carbons
prepared from Pistacia shells, Adsorpt. Sci. Technol., 15 (1997)
419–427.
- S. Lowell, J.E. Shields, Powder Surface Area and Porosity,
Chapman & Hall, London, 1998.