References

  1. K. Venkataraman, Ed., The Chemistry of Synthetic Dyes, Vol. 5, Academic Press, New York and London, 1971.
  2. R. Singh, Synthetic Dyes, Mittal Publications, New Delhi, 2002.
  3. A. Srinivasan, T. Viraraghavan, Decolorization of dye wastewaters by biosorbents: a review, J. Environ. Manage., 91 (2010) 1915–1929.
  4. C.A. Fewson, Biodegradation of xenobiotic and other persistent compounds: the causes of recalcitrance, Trends Biotechnol., 6 (1998) 148–153.
  5. K. Vikrant, B.S. Giri, N. Raza, K. Roy, K. Kim, B.N. Rai, R.S. Singh, Recent advancements in bioremediation of dye: current status and challenges, Bioresour. Technol., 253 (2018) 355–367.
  6. I.M. Banat, P. Nigam, D. Singh, R. Merchant, Microbial decolorization of textile dye containing effluents: a review, Bioresour. Technol., 58 (1996) 217–227.
  7. D.A. Giannakoudakis, A. Hosseini-Bandegharaei, P. Tsafrakidou, K.S. Triantafyllidisa, M. Kornarosd, I. Anastopoulos, Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: a review, J. Environ. Manage., 227 (2018) 354–364.
  8. S. Mishra, A. Maiti, The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review, Environ. Sci. Pollut. Res., 25 (2018) 8286–8314.
  9. A. Kumar, H. Gupta, Activated carbon from sawdust for naphthalene removal from contaminated water, Environ. Technol. Innovation, 20 (2020) 101080, doi: 10.1016/j. eti.2020.101080.
  10. S. Mishra, I. Cheng, A. Maiti, The utilization of agro-biomass/by-products for effective bio-removal of dyes from dyeing wastewater: A comprehensive review, J. Environ. Chem. Eng., 9 (2021) 104901, doi: 10.1016/j.jece.2020.104901.
  11. K. Pażdzior, L. Bilińska, S. Ledakowicz, A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment, Chem. Eng. J., 376 (2019) 120597, doi: 10.1016/j.cej.2018.12.057.
  12. Ü. Geçgel, O. Üner, G. Gökara, Y. Bayrak, Adsorption of cationic dyes on activated carbon obtained from waste Elaeagnus stone, Adsorpt. Sci. Technol., 34 (2016) 512–525.
  13. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  14. M. Malovanyy, K. Petrushkа, I. Petrushka, Improvement of adsorption-ion-exchange processes for waste and mine water purification, Chem. Chem. Technol., 13 (2019) 372–376.
  15. O.S. Bello, K.A. Adegoke, A.A. Olaniyan, H. Abdulazeez, Dye adsorption using biomass wastes and natural adsorbents: overview and future prospects, Desal. Water Treat., 53 (2015) 1292–1315.
  16. I.M. Lima, A.A. Boateng, K.T. Klasson, Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts, J. Chem. Technol., 85 (2010) 1515–1521.
  17. X.-F. Tan, Y.-G. Liu, Y.-L. Gu, Y. Xu, G.-M. Zeng, X.-J. Hu, S.-B. Liu, X. Wang, S.-M. Liu, J. Li, Biochar-based nanocomposites for the decontamination of wastewater: a review, Bioresour. Technol., 212 (2016) 318–333.
  18. X.-F. Tan, S.-B. Liu, Y.-G. Liu, Y.-L. Gu, G.-M. Zeng, X.-J. Hu, X. Wang, S.-H. Liu, L.-H. Jiang, Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage, Bioresour. Technol., 227 (2017) 359–372.
  19. M. Ahmad, R.T. Bachmann, M.A. Khan, R.G.J. Edyvean, U. Farooq, M.M. Athar, Dye removal using carbonized biomass, isotherm and kinetic studies, Desal. Water Treat., 53 (2015) 2289–2298.
  20. I.I. Gerashchenko, Physicochemical aspects of therapeutic effect of enterosorbents (theoretical research), Chem. Phys. Technol. Surf., 9 (2018) 373–382.
  21. A. Krause, P. Kossyrev, M. Oljaca, S. Passerini, M. Winter, A. Balducci, Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black, J. Power Sources, 196 (2011) 8836–8842.
  22. P. Ratajczak, K. Jurewicz, F. Béguin, Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte, J. Appl. Electrochem., 44 (2014) 475–480.
  23. A.G. Berezhnaya, V.V. Chernyavina, A.L. Sinyavin, Electrochemical parameters of supercapacitors on a neutral aqueous electrolyte with various electrode materials, Russ. J. Electrochem., 55 (2019) 802–806.
  24. I. Bordun, P. Chabecki, M. Malovanyy, T. Pieshkov, K. Chwastek, Changes in the electrical charge accumulation ability of nanoporous activated carbon under ultrasonic radiation exposure, Isr. J. Chem., 60 (2020) 615–623.
  25. J. Rodriguez-Romero, I. Ruiz de Larramendi, E. Goikolea, Nanostructured manganese dioxide for hybrid supercapacitor electrodes, Batteries, 8 (2022) 263, doi: 10.3390/batteries8120263.
  26. T.D. Khokhlova, L.T. Hien, Adsorption of dyes on activated carbon and graphitic thermal carbon black, Moscow Univ. Chem. Bull., 62 (2007) 128–131.
  27. L.M. Soldatkina, E.V. Sagaidak, Kinetics of adsorption of watersoluble dyes on activated carbons, J. Water Chem. Technol., 32 (2010) 212–217.
  28. Z.C. Kadirova, K. Katsumata, T. Isobe, N. Matsushita, A. Nakajima, K. Okada, Adsorption and photodegradation of Methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution, Appl. Surf. Sci., 284 (2013) 72–79.
  29. S. Pohlmann, B. Lobato, T.A. Centeno, A. Balducci, The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors, Phys. Chem. Chem. Phys., 15 (2013) 17287–17294.
  30. A.P. Baranov, G.V. Shteynberg, V.S. Bagotskiy, Study of the hydrophobized active layer of a gas diffusion electrode, Elektrohimiya, 7 (1971) 387–390.
  31. B. Bestani, N. Benderdouche, B. Bestaali, M. Belhakem, А. Addou, Methylene blue and iodine adsorption onto an activated desert plant, Bioresour. Technol., 99 (2008) 8441–8444.
  32. O. Paşka, R. Ianoş, C. Păcurariu, A. Brădeanu, Magnetic nanopowder as effective adsorbent for the removal of Congo red from aqueous solution, Water Sci. Technol., 69 (2013) 1234–1240.
  33. F. Raposo, M.A. de La Rubia, R. Borja, Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: influence of adsorbate/adsorbent mass ratio and particle size, J. Hazard. Mater., 165 (2009) 291–299.
  34. S. Mitra, M. Muttakin, K. Thu, B.B. Saha, Study on the influence of adsorbent particle size and heat exchanger aspect ratio on dynamic adsorption characteristics, Appl. Therm. Eng., 133 (2018) 764–773.
  35. Y. Matsui, S. Nakao, A. Sakamoto, T. Taniguchi, L. Pan, T. Matsushita, N. Shirasaki, Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: effects of adsorbent and adsorbate characteristics, Water Res., 85 (2015) 95–102.
  36. N. Saeidi, M.N. Lotfollahi, Effects of powder activated carbon particle size on adsorption capacity and mechanical properties of the semi activated carbon fiber, Fibers Polym., 16 (2015) 543–549.
  37. M. Thommes, K. Kaneko, A. Neimark, J. Rodriguez-Reinoso, J. Rouquerol, K. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  38. J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Elsevier/Academic Press, Oxford, 2014.
  39. S.V. Pahovchyshin, I.G. Chernych, V.F. Gritsenko, Some restrictions on the use of the indicator method in studying the surface of graphite particles, Colloid J. USSR, 3 (1991) 245–249.
  40. K.Y. Foo, B.H. Hameed, An overview of dye removal via activated carbon adsorption process, Desal. Water Treat., 19 (2010) 255–274.
  41. N. Bouchemal, F. Addoun, Adsorption of dyes from aqueous solution onto activated carbons prepared from date pits: the effect of adsorbents pore size distribution, Desal. Water Treat., 7 (2009) 242–250.
  42. M. Szlachta, P. Wojtowicz, Adsorption of Methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes, Water Sci. Technol., 68 (2013) 2240–2248.
  43. Z. Li, H. Hanafy, L. Zhang, L. Sellaoui, M.S. Netto, M.L.S. Oliveira, M.K. Seliem, G.L. Dotto, A. Bonilla-Petriciolet, Q. Li, Adsorption of Congo red and Methylene blue dyes on an Ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations, Chem. Eng. J., 388 (2020) 124263, doi: 10.1016/j.cej.2020.124263.
  44. Ch. Soloviy, M. Malovanyy, I. Bordun, F. Ivashchyshyn, A. Borysiuk, Yu. Kulyk, Structural, magnetic and adsorption characteristics of magnetically susceptible carbon sorbents based on natural raw materials, J. Water Land Dev., 47 (2020) 160–168.
  45. V. Jr. Strelko, D. Malik, M. Streat, Characterisation of the surface of oxidised carbon adsorbents, Carbon, 40 (2002) 95–104.
  46. M.J. de Souza, N.B. da Costa Júnior, L.E. Almeida, E.F. da Silva Vieira, A.R. Cestari, I. de Fátima Gimenez, N.L. Villarreal Carreno, L.S. Barreto, Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust, J. Colloid Interface Sci., 298 (2006) 515–522.
  47. G.L. Dotto, J.M.N. Santos, I.L. Rodrigues, R. Rosa, F.A. Pavan, E.C. Lima, Adsorption of Methylene blue by ultrasonic surface modified chitin, J. Colloid Interface Sci., 446 (2015) 133–140.
  48. Q. Wu, H. Liang, M. Li, Hierarchically porous carbon membranes derived from PAN and their selective adsorption of organic dyes, Chin. J. Polym. Sci., 34 (2016) 23–33.
  49. R.W. Dapson, Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining, Biotech. Histochem., 93 (2018) 1–14.
  50. F. Güzel, Z. Tez, The characterization of the micropore structures of some activated carbons of plant origin by N2 and CO2 adsorptions, Sep. Sci. Technol., 28 (1993) 1609–1627.
  51. C.U. Pittman Jr., G.-R. He, B. Wu, S.D. Gardner, Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine, Carbon, 35 (1997) 317–331.
  52. M.A. Hourieh, M.N. Alaya, A.M. Youssef, Carbon dioxide adsorption and decolourizing power of activated carbons prepared from Pistacia shells, Adsorpt. Sci. Technol., 15 (1997) 419–427.
  53. S. Lowell, J.E. Shields, Powder Surface Area and Porosity, Chapman & Hall, London, 1998.