References

  1. E. Symonides, The role of ecological interactions in the agricultural landscape, Water Environ. Rural Areas, 10 (2010) 249–263.
  2. N.N. Jeke, F. Zvomuya, N. Cicek, L. Ross, P. Badiou, Nitrogen and phosphorus phytoextraction by Cattail (Typha spp.) during wetland-based phytoremediation of an end-of-life municipal lagoon, J. Environ. Qual., 48 (2019) 24–31.
  3. J. Koc, I. Cymes, A. Skwierawski, U. Szyperek, The importance of protecting small water reservoirs in the agricultural landscape, Zesz. Probl. Post. Nauk Rol., 476 (2001) 397–407.
  4. A. Parzych, Contents of nitrogen and phosphorus compounds in groundwaters of selected forest associations in the Słowiński National Park, Arch. Environ. Prot., 37 (2011) 95–105.
  5. I. Cymes, K. Glińska-Lewczuk, M. Cymer, S. Szymczyk, A. Parzych, I. Ryniec, Accumulation of selected chemical elements in sediments of kettle hole lake on rural areas, Desal. Water Treat., 117 (2018) 272–281.
  6. E. Skorbiłowicz, J. Wiater, Estimation of water environment quality of Nereśl River in the course section within peatbogs and swamps area, Acta Agrophysica, 1 (2003) 183–190.
  7. P. Miretzky, A. Saralegui, C.A. Fernandez, Aquatic macrophytes potential for the simultaneous removal heavy metals (Buenos Aires, Argentina), Chemosphere, 57 (2004) 997–1005.
  8. A.J. Cardwell, D.W. Hawker, M. Greenway, Metal accumulation in aquatic macrophytes from southeast Queensland, Australia, Chemosphere, 48 (2002) 653–663.
  9. J. Liu, Y. Li, B. Zhang, J. Cao, Z. Cao, J. Domagalski, Ecological risk of heavy metals in sediments of the Luan River source water, Ecotoxicology, 8 (2009) 748–758.
  10. J. Robotham, G. Old, P. Rameshwaran, D. Sear, D. Gasca-Tucker, J. Bishop, J. Old, D. McKnight, Sediment and nutrient retention in ponds on an agricultural stream: evaluating effectiveness for diffuse pollution mitigation, Water, 13 (2021) 1640, doi: 10.3390/w13121640.
  11. A. Klink, M. Wisłocka, M. Musiał, J. Krawczyk, Macro– and trace– elements accumulation in Typha angustifolia L. and Typha latifolia L. organs and their use in bioindycation, Pol. J. Environ. Stud., 22 (2013) 183–190.
  12. M. Skorbiłowicz, E. Skorbiłowicz, U. Tarasiuk, M. Falkowska, Studies of heavy metal content in bottom sediments and aquatic plants near treated wastewater discharge, Geol. Geophys. Environ., 43 (2017) 311–325.
  13. J.J.M. Geurts, C. Oehmke, C. Lambertini, F. Eller, B.K. Sorrell, S.R. Mandiola, A.P. Grootjans, H. Brix, W. Wichtmann, L.P.M. Lamers, C. Fritz, Nutrient removal potential and biomass production by Phragmites australis and Typha latifolia on European rewetted peat and mineral soils, Sci. Total Environ., 747 (2020) 141102, doi: 10.1016/j.scitotenv.2020.141102.
  14. A. Wei, P. Chow-Fraser, Synergistic impact of water level fluctuation and invasion of Glyceria on Typha in a freshwater marsh of Lake Ontario, Aquat. Bot., 84 (2005) 63–69.
  15. P. Wesołowski, M. Trzaskoś, R. Konieczny, Floristic composition and biological values of plant communities in the litoral zone Lake Resko, Water Environ. Rural Areas, 2 (2006) 373–385 (in Polish).
  16. A. Parzych, Z. Sobisz, M. Cymer, Preliminary research of heavy metals content by aquatic macrophytes taken from surface water (Northern Poland), Desal. Water Treat., 57 (2016) 1453–1463.
  17. J. Pijlman, J. Geurts, R. Vroom, M. Bestman, C. Fritz, N. van Eekeren, The effects of harvest date and frequency on the yield, nutritional value and mineral content of the paludiculture crop cattail (Typha latifolia L.) in the first year after planting, Mires Peat, 25 (2019) 1–19.
  18. C.S. Akratos, V.A. Tsihrintzis, Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilotscale horizontal subsurface flow constructed wetlands, Ecol. Eng., 29 (2007) 173–191.
  19. V. Dummee, M. Kruatrachue, W. Trinachartvanit, P. Tanhan, P. Pokethitiyook, P. Damrongpholp, Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand, Ecotoxicol. Environ. Saf., 86 (2012) 204–212.
  20. A. Dygulska, A. Parzych, Accumulation of nitrogen and phosphorus in bottom sediments and in shoots of Typha latifolia L. in selected water reservoirs, Słupskie Prace Biologiczne, 12 (2015) 71–84 (in Polish).
  21. H. Wu, J. Zhang, H.H. Ngo, W. Guo, Z. Hu, S. Liang, J. Fan, H.A. Liu, A review on the sustainability of constructed wetlands for wastewater treatment: design and operation, Bioresour. Technol., 175 (2015) 594–601.
  22. A. Gebeyehue, N. Shebeshe, H. Kloos, S. Belay, Suitability of nutrients removal from brewery wastewater using a hydroponic technology with Typha latifolia, Biotechnology, 18 (2018) 74, doi: 10.1186/s12896-018-0484-4.
  23. L. Ren, F. Eller, C. Lambertini, W.Y. Guo, H. Brix, B.K. Sorrell, Assessing nutrient responses and biomass quality for selection of appropriate paludiculture crops, Sci. Total Environ., 664 (2019) 1150–1161.
  24. P. Sadler, Wetlands for Mine Water Treatment Workshop, Constructed Wetlands – Biofiltration, University of Wales, Cardiff, 1998.
  25. A. Klink, L. Polechońska, A. Cegłowska, A. Stankiewicz, Typha latifolia (broadleaf cattail) as bioindicator of different types of pollution in aquatic ecosystems – application of self-organizing feature map (neural network), Environ. Sci. Pollut. Res., 23 (2016) 14078–14086.
  26. S. Rezania, S.M. Taib, M.F.M. Din, F.A. Dahalan, H. Kamyab, Comprehensive review on phytotechnology: heavy metals removal by diverse plants species from wastewater, J. Hazard. Mater., 318 (2016) 587–599.
  27. J.E. Gall, R.S. Boyd, N. Rajakaruna, Transfer of heavy metals through terrestrial food webs: a review, Environ. Monit. Assess., 187 (2015) 1–21.
  28. Report (2020), Report on the State of the Environment in the Pomeranian Voivodeship in 2020, Environmental Monitoring Library, Gdańsk 2021 (in Polish).
  29. M. Kirschenstein, D. Baranowski, Annual precipitation and air temperature fluctuations and change tendencies in Słupsk, Dokumentacja Geograficzna, 37 (2008) 76–82.
  30. J. Wołek, Wprowadzenie do statystyki dla biologów, Wyd. Nauk. AP w Krakowie, 2005 (in Polish).
  31. W. Zhang, Y. Cai, C. Tu, L.Q. Ma, Arsenic speciation and distribution in an arsenic hyperaccumulating plant, Sci. Total Environ., 300 (2002) 167–177.
  32. J.H. Ward, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 58 (1963) 236–244.
  33. H. Smal, W. Salomons, Acidification and Its Long-Term Impact on Metal Mobility, W. Salomons, W.M. Stigliani, Eds., Biogeodynamics of Pollutants in Soils and Sediments, Springer, Berlin, 1995, pp. 193–212.
  34. A. Kuriata-Potasznik, S. Szymczyk, D. Pilejczyk, Effect of bottom sediments on the nutrient and metal concentration in macrophytes of river-lake systems, Ann. Limnol. – Int. J. Limnol., 54 (2018) 1–10.
  35. A. Kabata-Pendias, H. Pendias, Biogeochemistry of Trace Elements, Polish Scientific Publishing, Warszawa, 1999 (in Polish).
  36. C. Jasiewicz, A. Baran, Characterization of bottom sediments of two small water retention reservoirs, J. Elementol., 11 (2006) 307–317.
  37. E. Krzywy, Nutrition of Plants, West Pomeranian University of Technology Publishing, Szczecin, 2007 (in Polish).
  38. F.J. Stevenson, Geochemistry of Soil Humic Substances, G.R. Aiken, D.M. McKnight, R.L. Wershaw, P. MacCarthy, Eds., Humic Substances in Soil, Sediment and Water, John Wiley and Sons, New York-Chichester-Brisbone-Toronto-Singapore, 1985.
  39. H. Brix, K. Dyhr-Jensen, B. Lorenzen, Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate, J. Exp. Bot., 53 (2002) 2441–2450.
  40. Y. Tang, S.F. Harpenslager, M.M.L. van Kempen, E.J.H. Verbaarschot, L.M.J.M. Loeffen, J.G.M. Roelofs, A.J.P. Smolders, L.P.M. Lamers, Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands, Biogeosciences, 14 (2016) 755–766.
  41. A. Parzych, A. Astel, Accumulation of N, P, K, Mg and Ca in 20 species of herbaceous plants in headwater riparian forest, Desal. Water Treat., 117 (2018) 156–167.
  42. A. Ostrowska, G. Porębska, The Chemical Composition of Plants, its Interpretation and Application in Environmental Protection, Institute of Environmental Protection Publishing, Warsaw, 2002 (in Polish).
  43. A. Parzych, M. Cymer, J. Jonczak, S. Szymczyk, The ability of leaves and rhizomes of aquatic plants to accumulate macroand micronutrients, Ecol. Eng., 16 (2015) 198–205.
  44. T. Lityński, H. Jurkowska, The Fertility of Soil and Plant Nutrition, Państ. Wyd. Nauk., Warsaw, 1982 (in Polish).
  45. A. Sasmaz, E. Obek, H. Hasar, The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent, Ecol. Eng., 33 (2009) 278–284.
  46. N. Shafi, A.R. Pandit, A.N. Kamili, B. Mushtag, Heavy metal accumulation by Azolla pinnata of dal lake ecosystem, India, J. Environ. Prot. Sustainable Dev., 1 (2015) 8–12.
  47. A. Potasznik, S. Szymczyk, M. Sidoruk, I.J. Switajska, Role of Lake Symsar in the reduction of phosphorus concentration in surface runoff from agricultural lands, J. Water Land Dev., 20 (2014) 39–44.
  48. G. Bonanno, G.L. Cirelli, Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia, Ecotoxicol. Environ. Saf., 143 (2017) 92–101.
  49. Z. Wang, L. Yao, G. Lin, W. Liu, Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China, Ecotoxicol. Environ. Saf., 107 (2014) 200–206.
  50. P. Wesołowski, H. Jankowska-Huflejt, A. Brysiewicz, Comparison of the ability of plant communities
    in mid-field ponds to stopping nutrients, Water Environ. Rural Areas, 16 (2016) 127–138.