References

  1. M. Arslan, U. Inaam, J.A. Müller, N. Shahid, M. Afzal, Organic Micropollutants in the Environment: Ecotoxicity Potential and Methods for Remediation, N. Anjum, S. Gill, N. Tuteja, Eds., Enhancing Cleanup of Environmental Pollutants, Springer, Cham, 2017.
  2. M. Farre, M. Gros, B. Hernandez, M. Petrovic, P. Hancock, D. Barcelo, Analysis of biologically active compounds in water by ultra-performance liquid chromatography quadrupole timeof-flight mass spectrometry, Rapid Commun. Mass Spectrom., 22 (2008) 41–51.
  3. M. Farre, S. Perez, L. Kantiani, D. Barcelo, Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment, TrAC, Trends Anal. Chem., 27 (2008) 991–1007.
  4. J.B. Ellis, Pharmaceutical and personal care products (PPCPs) in urban receiving waters, Environ. Pollut., 144 (2006) 184–189
  5. O. Ojajuni, D. Saroj, G. Cavalli, Removal of organic micropollutants using membraneassisted processes: a review of recent progress, Environ. Technol. Rev., 4 (2015) 17–37.
  6. P. Verlicchi, A. Galletti, M. Petrovic, D. Barceló, Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options, J. Hydrol., 389 (2010) 416–428.
  7. L. Meng, L. Gan, H. Gong, J. Su, P. Wang, W. Li, W. Chu, L. Xu, Efficient degradation of bisphenol A using high-frequency ultrasound: analysis of influencing factors and mechanistic investigation, J. Cleaner Prod., 232 (2019) 1195–1203.
  8. K. Zhang, N. Gao, Y. Deng, T.F. Lin, Y. Ma, L. Li, M. Sui, Degradation of bisphenol-A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide, J. Environ. Sci., 23 (2011) 31–36.
  9. O.A. Rotimi, T.D. Olawole, O.C. De Campos, I.B. Adelani, S.O. Rotimi, Bisphenol A in Africa: a review of environmental and biological levels, Sci. Total Environ., 764 (2021) 142854, doi: 10.1016/j.scitotenv.2020.142854.
  10. Y. Ma, H. Liu, J. Wu, L. Yuan, Y. Wang, X. Du, R. Wang, P.W. Marwa, P. Petlulu, X. Chen, H. Zhang, The adverse health effects of bisphenol A and related toxicity mechanisms, Environ. Res., 176 (2019) 108575, doi: 10.1016/j.envres.2019.108575.
  11. L.A. Tse, P.M.Y. Lee, W.M. Ho, A.T. Lam, M.K. Lee, S.S.M. Ng, Y. He, K. Sing Leung, J.C. Hartle, H. Hu, H. Kan, F. Wang, C.F. Ng, Bisphenol A and other environmental risk factors for prostate cancer in Hong Kong, Environ. Int., 107 (2017) 1–7.
  12. K.S. Zhang, H.Q. Chen, Y.S. Chen, K.F. Qiu, X. Bin Zheng, G.C. Li, H. Di Yang, C.J. Wen, Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway, Biomed. Pharmacother., 68 (2014) 1037–1043.
  13. E. Saggioro, D. Bila, S. Satyro, Ecotoxicology of Pharmaceutical and Personal Care Products (PPCPs), CRC Press, 2018.
  14. N.S.P. Batucan, L.A. Tremblay, G.L. Northcott, C.D. Matthaei, Medicating the environment? A critical review on the risks of carbamazepine, diclofenac and ibuprofen to aquatic organisms, Environ. Adv., 7 (2022) 100164, doi: 10.1016/j.envadv.2021.100164.
  15. B. Ferrari, N. Paxéus, R. Lo Giudice, A. Pollio, J. Garric, Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac, Ecotoxicol. Environ. Saf., 55 (2003) 359–370.
  16. M. Hampel, J.E. Bron, J.B. Taggart, M.J. Leaver, The antidepressant drug carbamazepine induces differential transcriptome expression in the brain of Atlantic salmon, Salmo salar, Aquat. Toxicol., 151 (2014) 114–123.
  17. A.L. Jarvis, M.J. Bernot, R.J. Bernot, The effects of the psychiatric drug carbamazepine on freshwater invertebrate communities and ecosystem dynamics, Sci. Total Environ., 496 (2014) 461–470.
  18. O.I. Dar, R. Aslam, D. Pan, S. Sharma, M. Andotra, A. Kaur, A.Q. Jia, C. Faggio, Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: a review, Environ. Technol. Innov., 25 (2022) 102122, doi: 10.1016/j. eti.2021.102122.
  19. L.M. Weatherly, J.A. Gosse, Triclosan exposure, transformation, and human health effects, J. Toxicol. Environ. Health Part B, 20 (2017) 447–469.
  20. C. Zhao, H.J. Xie, J. Xu, J. Zhang, S. Liang, J. Hao, H.H. Ngo, W. Guo, X. Xu, Q. Wang, J. Wang, Removal mechanisms and plant species selection by bioaccumulative factors in surface flow constructed wetlands (CWs): in the case of triclosan, Sci. Total Environ., 547 (2016) 9–16.
  21. G.S. Dhillon, S. Kaur, R. Pulicharla, S.K. Brar, M. Cledón, M. Verma, R.Y. Surampalli, Triclosan: current status, occurrence, environmental risks and bioaccumulation potential, Int. J. Environ. Res. Public Health, 12 (2015) 5657–5684.
  22. International Agency for Research on Cancer List of Classifications. Available at https://Monographs.Iarc.Fr/ List-of-Classifications
  23. I. Gabriele, M. Race, S. Papirio, G. Esposito, Phytoremediation of pyrene-contaminated soils: a critical review of the key factors affecting the fate of pyrene, J. Environ. Manage., 293 (2021) 112805, doi: 10.1016/j.jenvman.2021.112805.
  24. H.I. Abdel-Shafy, M.S.M. Mansour, A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egypt. J. Pet., 25 (2016) 107–123.
  25. P. Gupta, S. Suresh, J.M. Jha, F. Banat, M. Sillanpää, Sonochemical degradation of polycyclic aromatic hydrocarbons: a review, Environ. Chem. Lett., 19 (2021) 2663–2687.
  26. X. Li, Y. Yang, X. Xu, C. Xu, J. Hong, Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China, J. Cleaner Prod., 112 (2016) 1360–1367.
  27. J. Copik, E. Kudlek, M. Dudziak, Degradation of bisphenol A and Pyrene from highway retention basin water using ultrasound enhanced by UV irradiation, Arch. Civ. Eng. Environ., 2 (2022) 135–148.
  28. S.M. Tinguely, A. David, A. Lange, C.R. Tyler, Effects of maternal exposure to environmentally relevant concentrations of 17α-ethinyloestradiol in a live bearing freshwater fish, Xenotoca eiseni (Cyprinodontiformes, Goodeidae), Aquat. Toxicol., 232 (2021) 105746, doi: 10.1016/j.aquatox.2021.105746.
  29. E. Kudlek, Oxidation of Organic Micropollutants – Identification of Decomposition Products, Toxicity, 2022.
  30. P. Gago-Ferrero, Impact of on-site, small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals, personal care products, artificial sweeteners, pesticides and perfluoroaktyl substances in recipient waters, Sci. Total. Environ., 601 (2017) 1289–1297.
  31. M. Sörengård, H. Campos-Pereira, M. Ullberg, F.Y. Lai, O. Golovko, L. Ahrens, Mass loads, source apportionment, and risk estimation of organic micropollutants from hospital and municipal wastewater in recipient catchments, Chemosphere, 234 (2019) 931–941.
  32. N.H. Ince, G. Tezcanli, R.K. Belen, G. Apikyan, Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications, Appl. Catal., B, 29 (2001) 167–176.
  33. P.R. Gogate, Cavitational reactors for process intensification of chemical processing applications: a critical review, Chem. Eng. Process. Process Intensif., 47 (2008) 515–527.
  34. K. Yasui, Acoustic Cavitation and Bubble Dynamics, 2018.
  35. M. Dular, T. Griessler-Bulc, I. Gutierrez-Aguirre, E. Heath, T. Kosjek, A. Krivograd Klemenčič, M. Oder, M. Petkovšek, N. Rački, M. Ravnikar, A. Šarc, B. Širok, M. Zupanc, M. Žitnik, B. Kompare, Use of hydrodynamic cavitation in (waste)water treatment, Ultrason. Sonochem., 29 (2016) 577–588.
  36. M. Ashokkumar, The characterization of acoustic cavitation bubbles – an overview, Ultrason. Sonochem., 18 (2011) 864–872.
  37. H. Carrère, C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenès, J.P. Steyer, I. Ferrer, Pretreatment methods to improve sludge anaerobic degradability: a review, J. Hazard. Mater., 183 (2010) 1–15.
  38. V. Naddeo, A. Cesaro, D. Mantzavinos, D. Fatta-Kassinos, V. Belgiorno, Water and wastewater disinfection by ultrasound irradiation-a critical review, Global Nest J., 16 (2014) 561–577.
  39. F.V. de Andrade, R. Augusti, G.M. de Lima, Ultrasound for the remediation of contaminated waters with persistent organic pollutants: a short review, Ultrason. Sonochem., 78 (2021) 105719, doi: 10.1016/j.ultsonch.2021.105719.
  40. M.R. Doosti, R. Kargar, M.H. Sayadi, Water treatment using ultrasonic assistance: a review, Ecology, 2 (2012) 96–110.
  41. M. Nie, Q. Wang, G. Qiu, Enhancement of ultrasonically initiated emulsion polymerization rate using aliphatic alcohols as hydroxyl radical scavengers, Ultrason. Sonochem., 15 (2008) 222–226.
  42. G. Wang, W. Wu, J.J. Zhu, D. Peng, The promise of low-intensity ultrasound: a review on sonosensitizers and sonocatalysts by ultrasonic activation for bacterial killing, Ultrason. Sonochem., 79 (2021) 105781, doi: 10.1016/j.ultsonch.2021.105781.
  43. M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation – a review, Chem. Eng. J., 338 (2018) 599–627.
  44. Z. Guo, R. Feng, Ultrasonic irradiation-induced degradation of low-concentration bisphenol A in aqueous solution, J. Hazard. Mater., 163 (2009) 855–860.
  45. J. Copik, E. Kudlek, M. Dudziak, Removal of PAHs from road drainage system by ultrasonication, Environ. Sci. Proc., 9 (2021) 4, doi: 10.3390/environsciproc2021009004.
  46. Z. Wu, A. Abramova, R. Nikonov, G. Cravotto, Sonozonation (sonication/ozonation) for the degradation of organic contaminants – a review, Ultrason. Sonochem., 68 (2020) 1–23.
  47. M. Lim, Y. Son, J. Khim, The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A, Ultrason. Sonochem., 21 (2014) 1976–1981.
  48. S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang, S.H. Bryant, PubChem substance and compound databases, Nucleic Acids Res., 44 (2016) D1202–D1213.
  49. S. Werle, M. Dudziak, Evaluation of toxicity of sewage sludge and gasification waste-products, Przem. Chem., 92 (2013) 1350–1353.
  50. T.J. Mason, J.P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Wiley-Interscience, New York, 1988.
  51. T. Kimura, T. Sakamoto, J.M. Leveque, H. Sohmiya, M. Fujita, S. Ikeda, T. Ando, Standardization of ultrasonic power for sonochemical reaction, Ultrason. Sonochem., 3 (1996) S157–S161.
  52. R.A. Al-Juboori, V. Aravinthan, T. Yusaf, Impact of pulsed ultrasound on bacteria reduction of natural waters, Ultrason. Sonochem., 27 (2015) 137–147.
  53. T. Mason, D. Peters, Practical Sonochemistry: Power Ultrasound Uses and Applications, Woodhead Publishing, 2002.
  54. D. Chen, Applications of ultrasound in water and wastewater treatment, Handb. Appl. Ultrasound Sonochemistry Sustain., 2011.
  55. A.L. Camargo-Perea, A. Rubio-Clemente, G.A. Peñuela, Use of ultrasound as an advanced oxidation process for the degradation of emerging pollutants in water, Water (Switzerland), 12 (2020) 1–23.
  56. J.D. Seymour, R.B. Gupta, Oxidation of aqueous pollutants using ultrasound: salt-induced enhancement, Ind. Eng. Chem. Res., 36 (1997) 3453–3457.
  57. L. Sanchez-Prado, R. Barro, C. Garcia-Jares, M. Llompart, M. Lores, C. Petrakis, N. Kalogerakis, D. Mantzavinos, E. Psillakis, Sonochemical degradation of triclosan in water and wastewater, Ultrason. Sonochem., 15 (2008) 689–694.
  58. N.N. Mahamuni, A.B. Pandit, Effect of additives on ultrasonic degradation of phenol, Ultrason. Sonochem., 13 (2006) 165–174.
  59. Z. Laughrey, E. Bear, R. Jones, M.A. Tarr, Aqueous sonolytic decomposition of polycyclic aromatic hydrocarbons in the presence of additional dissolved species, Ultrason. Sonochem., 8 (2001) 353–357.
  60. C. V. Rekhate, J.K. Srivastava, Recent advances in ozone-based advanced oxidation processes for treatment of wastewater – a review, Chem. Eng. J. Adv., 3 (2020) 100031, doi: 10.1016/j. ceja.2020.100031.
  61. K.H. Chu, Y.A.J. Al-Hamadani, C.M. Park, G. Lee, M. Jang, A. Jang, N. Her, A. Son, Y. Yoon, Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: a review, Chem. Eng. J., 327 (2017) 629–647.
  62. Y.A.J. Al-Hamadani, K.H. Chu, J.R.V. Flora, D.H. Kim, M. Jang, J. Sohn, W. Joo, Y. Yoon, Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads
    and single-walled carbon nanotubes, Ultrason. Sonochem., 32 (2016) 440–448.
  63. R. Pflieger, T. Chave, M. Virot, S.I. Nikitenko, Activating molecules, ions, and solid particles with acoustic cavitation, J. Vis. Exp., 86 (2014) 51237, doi: 10.3791/51237.
  64. E. Kudlek, Influence of UV Irradiation Spectra on the Formation of Micropollutant Decomposition By-Products during Heterogeneous Photocatalysis, Proceedings, 16 (2019) 51.
  65. J. Whysner, M.V. Reddy, P.M. Ross, M. Mohan, E.A. Lax, Genotoxicity of benzene and its metabolites, Mutat. Res. Rev. Mutat. Res., 566 (2004) 99–130.
  66. E. Kudlek, Decomposition of contaminants of emerging concern in advanced oxidation processes, Water (Switzerland), 10 (2018) 955.
  67. M. Dudziak, E. Kudlek, E. Burdzik-Niemiec, Decomposition of micropollutants and changes in the toxicity of water matrices subjected to various oxidation processes, Desal. Water Treat., 117 (2018) 181–187.
  68. I. Skoczko, J. Piekutin, Photo-Fenton method usage to organic compounds degradation, Desal. Water Treat., 52 (2014) 3837–3842.
  69. I. Skoczko, Research on pesticide degradation with fenton method using MgO2, Annu. Set Environ. Prot., 15 (2013) 1460–1473.