References

  1. R. Chinchilla, Phosphorus Responde and Orthophosphate Leaching in Floratam St. Augustinegrass and Empire Zoysiagrass, University of Florida, United States, 2010.
  2. F. Stevenson, M. Cole, Cycles of Soils: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, John Wiley & Sons, New York, 1999.
  3. B. Sapek, Release of nitrogen and phosphorus from soil organic matter, Water-Environment-Rural Areas, 10 (2010) 229–256.
  4. A. Ludwick, Phosphorus Mobility in Perspective, News & Views, Canada, 1998.
  5. K. Reddy, G. O‘Connor, P. Gale, Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent, J. Environ. Qual., 27 (1988) 438–447.
  6. W.G. Harris, Phosphate Minerals, J.B. Dixon, D.G. Schulze, Eds., Soil Mineralogy with Environmental Applications, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, United States, 2002, pp. 637–665.
  7. A. Kwarciak-Kozłowska, Chapter 15 – Co-composting of Sewage Sludge and Wetland Plant Material From a Constructed Wetland Treating Domestic Wastewater, M.N.V. Prasad, P.J. de Campos Favas, M. Vithanage, S. Venkata Mohan, Eds., Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery, Butterworth-Heinemann, Poland, 2019.
  8. O. Muter, Ł. Dubova, O. Kassien, J. Cakane, I. Alsina, Application of the Sewage Sludge in Agriculture: Soil Fertility, Technoeconomic, and Life-Cycle Assessment, R.B. Jeyakumar, K. Sankarapandian, Y.K. Ravi, Eds., Hazardous Waste Management, InTechOpen, London, 2022.
  9. M. Domini, G. Bertanzy, R. Vahidzadeh, R. Pedrazzani, Sewage sludge quality and management for circular economy opportunities in Lombardy, Appl. Sci., 12 (2022) 10391, doi: 10.3390/app122010391.
  10. M. Filkiewicz, M. Kupiec, Assessment of the possibilities of agricultural use of sewage sludge from wastewater treatment plants in Olecko, Ecol. Eng., 42 (2015) 42–46.
  11. Y. Yang, J. Yang, X. Zhang, A qPCR method to quantify bioavailable phosphorus using indigenous aquatic species, Environ. Sci. Eur., 30 (2018) 32, doi: 10.1186/s12302-018-0163-z.
  12. H.L. Golterman, Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods, Hydrobiologia, 335 (1996) 87–95.
  13. B. Herbst, Sewage sludge treatment with lime, Schriftenreihe des Vereins für Wasser-, Boden- und Lufthygiene, 105 (2020) 337–40.
  14. K. Budzińska, A. Traczykowski, B. Szejniuk, A. Jurek, P. Pasela, K. Berleć, M. Michalska, Hygienization of sewage sludge with burned and hydrated lime, Chem. Ind., 1 (2015) 188–192.
  15. A. Wysokiński, S. Kalembasa, Effects of adding CaO, lignite and coal ash to sewage sludge and composting on the content and forms of phosphorus in the mixture, Works Sci. Acad. Econ., 1017 (2004) 242–247.
  16. M. Filkiewicz, M. Kupiec, Assessment of the possibilities of agricultural use of sewage sludge from wastewater treatment plants in Olecko, Ecol. Eng., 42 (2015) 42–46.
  17. V. Istvánovics, The role of biota in shaping the phosphorus cycle in lakes, Freshwater Rev., 1 (2008) 143–174.
  18. J. Kopcewicz, S. Lewak, Physiology of Plants, PWN Scientific Publishers, Warsaw, 2002.
  19. B. Yu, J. Luo, H. Xie, H. Yang, S. Chen, J. Liu, R. Zhang, Y.Y. Li, Species, fractions, and characterization of phosphorus in sewage sludge: a critical review from the perspective of recovery, Sci. Total Environ., 786 (2021) 147437, doi: 10.1016/j.scitotenv.2021.147437.
  20. G. Medeiros, J. Pérez, B. Cid, F. Gómez, Analytical phosphorus fractionation in sewage sludge and sediment samples, Anal. Bioanal. Chem., 381 (2005) 873–878.
  21. H. Xu, H. Zhang, L. Shao, Fraction distributions of phosphorus in sewage sludge and sludge ash, Waste Biomass Valorization, 3 (2012) 355–361.
  22. B. Zhang, L. Wang, Y. Li, Fractionation and identification of iron-phosphorus compounds in sewage sludge, Chemosphere, 223 (2019) 250–256.
  23. S. Chang, M. Jackson, Fractionation of soil phosphorus, Soil Sci., 84 (1957) 133–140.
  24. R. Psenner, R. Puckso, Phosphorus fractionation: advantages and limits of the method for the study of sediments P origins and interactions, Arch. Hydrobiol. Beih. Ergebn. Limnol., 30 (1988) 43–59.
  25. J. Williams, J. Syers, T. Walter, Fractionation of soil inorganic phosphate by a modification of Chang and Jackson procedure, Soil Sci. Soc. Am. J., 1 (1967) 736–739.
  26. J. Williams, J. Syers, D. Armstrong, F. Harris, Fractionation of inorganic phosphate in calcareous lake sediments, Soil Sci. Soc. Am. J., 35 (1971) 250–255.
  27. E. Bezak-Mazur, A. Mazur, Influence of precipitation agents on speciation of phosphorus in sediments, Environ. Prot. Nat. Resour., 40 (2009) 561–569.
  28. E. Bezak-Mazur, A. Mazur, Phosphorus speciation in sewage sludge produced with application of the EvU-Perl, Environ. Prot. Nat. Resour., 49 (2011) 382–387.
  29. E. Bezak-Mazur, R. Stoińska, Speciation of phosphorus in wastewater sediments from selected wastewater treatment plant, Ecol. Chem. Eng. A, 20 (2013) 503–514.
  30. J. Bień, Sewage Sludge, Theory and Practice (Częstochowa Univ. of Tech., 2007).
  31. Determination of Phosphorus. Spectrophotometric Method with Ammonium Molybdate. PN-EN ISO 6878:2004.
  32. L. Rönspieß, G. Nausch, D. Schulz-Bull, Bioavailability of various phosphorus fractions and their seasonality in a eutrophic estuary in the southern baltic sea – a laboratory approach, Front. Mar. Sci., 8 (2021), doi: 10.3389/fmars.2021.715238.
  33. J.S. Park, H.M. Ro, Early-stage changes in chemical phosphorus speciation induced by liming deforested soils, J. Soil Sci. Plant Nutr., 18 (2018) 435–447.
  34. R.J. Haynes, Effects of liming on phosphate availability in acid soils, Plant Soil, 68 (1982) 289–308.
  35. M. Simonsson, A. Östlund, L. Renfjäll, C. Sigtryggsson, G. Börjesson, T. Kätterer, Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments, Geoderma, 315 (2018) 208–219.
  36. P. Johan, O. Ahmed, L. Omar, N. Hasbullah, Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash, Agronomy, Malaysia, 2021.
  37. E. Bezak-Mazur, R. Stoińska, B. Szeląg, Dynamics of the annual cycle changes in the bioavailable phosphorus forms share in excess sludge, Desal. Water Treat., 199 (2020) 273–281.