References
- R. Chinchilla, Phosphorus Responde and Orthophosphate
Leaching in Floratam St. Augustinegrass and Empire
Zoysiagrass, University of Florida, United States, 2010.
- F. Stevenson, M. Cole, Cycles of Soils: Carbon, Nitrogen,
Phosphorus, Sulfur, Micronutrients, John Wiley & Sons,
New York, 1999.
- B. Sapek, Release of nitrogen and phosphorus from soil
organic matter, Water-Environment-Rural Areas, 10 (2010)
229–256.
- A. Ludwick, Phosphorus Mobility in Perspective, News &
Views, Canada, 1998.
- K. Reddy, G. O‘Connor, P. Gale, Phosphorus sorption capacities
of wetland soils and stream sediments impacted by dairy
effluent, J. Environ. Qual., 27 (1988) 438–447.
- W.G. Harris, Phosphate Minerals, J.B. Dixon, D.G. Schulze, Eds.,
Soil Mineralogy with Environmental Applications, American
Society of Agronomy, Crop Science Society of America, and Soil
Science Society of America, United States, 2002, pp. 637–665.
- A. Kwarciak-Kozłowska, Chapter 15 – Co-composting of
Sewage Sludge and Wetland Plant Material From a Constructed
Wetland Treating Domestic Wastewater, M.N.V. Prasad, P.J. de
Campos Favas, M. Vithanage, S. Venkata Mohan, Eds., Industrial
and Municipal Sludge: Emerging Concerns and Scope for
Resource Recovery, Butterworth-Heinemann, Poland, 2019.
- O. Muter, Ł. Dubova, O. Kassien, J. Cakane, I. Alsina,
Application of the Sewage Sludge in Agriculture: Soil Fertility,
Technoeconomic, and Life-Cycle Assessment, R.B. Jeyakumar,
K. Sankarapandian, Y.K. Ravi, Eds., Hazardous Waste
Management, InTechOpen, London, 2022.
- M. Domini, G. Bertanzy, R. Vahidzadeh, R. Pedrazzani,
Sewage sludge quality and management for circular economy
opportunities in Lombardy, Appl. Sci., 12 (2022) 10391,
doi: 10.3390/app122010391.
- M. Filkiewicz, M. Kupiec, Assessment of the possibilities of
agricultural use of sewage sludge from wastewater treatment
plants in Olecko, Ecol. Eng., 42 (2015) 42–46.
- Y. Yang, J. Yang, X. Zhang, A qPCR method to quantify
bioavailable phosphorus using indigenous aquatic species,
Environ. Sci. Eur., 30 (2018) 32, doi: 10.1186/s12302-018-0163-z.
- H.L. Golterman, Fractionation of sediment phosphate with
chelating compounds: a simplification, and comparison with
other methods, Hydrobiologia, 335 (1996) 87–95.
- B. Herbst, Sewage sludge treatment with lime, Schriftenreihe
des Vereins für Wasser-, Boden- und Lufthygiene, 105 (2020)
337–40.
- K. Budzińska, A. Traczykowski, B. Szejniuk, A. Jurek, P. Pasela,
K. Berleć, M. Michalska, Hygienization of sewage sludge
with burned and hydrated lime, Chem. Ind., 1 (2015) 188–192.
- A. Wysokiński, S. Kalembasa, Effects of adding CaO, lignite and
coal ash to sewage sludge and composting on the content and
forms of phosphorus in the mixture, Works Sci. Acad. Econ.,
1017 (2004) 242–247.
- M. Filkiewicz, M. Kupiec, Assessment of the possibilities of
agricultural use of sewage sludge from wastewater treatment
plants in Olecko, Ecol. Eng., 42 (2015) 42–46.
- V. Istvánovics, The role of biota in shaping the phosphorus
cycle in lakes, Freshwater Rev., 1 (2008) 143–174.
- J. Kopcewicz, S. Lewak, Physiology of Plants, PWN Scientific
Publishers, Warsaw, 2002.
- B. Yu, J. Luo, H. Xie, H. Yang, S. Chen, J. Liu, R. Zhang,
Y.Y. Li, Species, fractions, and characterization of phosphorus
in sewage sludge: a critical review from the perspective of
recovery, Sci. Total Environ., 786 (2021) 147437, doi: 10.1016/j.scitotenv.2021.147437.
- G. Medeiros, J. Pérez, B. Cid, F. Gómez, Analytical phosphorus
fractionation in sewage sludge and sediment samples, Anal.
Bioanal. Chem., 381 (2005) 873–878.
- H. Xu, H. Zhang, L. Shao, Fraction distributions of phosphorus
in sewage sludge and sludge ash, Waste Biomass Valorization,
3 (2012) 355–361.
- B. Zhang, L. Wang, Y. Li, Fractionation and identification of
iron-phosphorus compounds in sewage sludge, Chemosphere,
223 (2019) 250–256.
- S. Chang, M. Jackson, Fractionation of soil phosphorus,
Soil Sci., 84 (1957) 133–140.
- R. Psenner, R. Puckso, Phosphorus fractionation: advantages
and limits of the method for the study of sediments P origins
and interactions, Arch. Hydrobiol. Beih. Ergebn. Limnol.,
30 (1988) 43–59.
- J. Williams, J. Syers, T. Walter, Fractionation of soil inorganic
phosphate by a modification of Chang and Jackson procedure,
Soil Sci. Soc. Am. J., 1 (1967) 736–739.
- J. Williams, J. Syers, D. Armstrong, F. Harris, Fractionation of
inorganic phosphate in calcareous lake sediments, Soil Sci. Soc.
Am. J., 35 (1971) 250–255.
- E. Bezak-Mazur, A. Mazur, Influence of precipitation agents
on speciation of phosphorus in sediments, Environ. Prot. Nat.
Resour., 40 (2009) 561–569.
- E. Bezak-Mazur, A. Mazur, Phosphorus speciation in sewage
sludge produced with application of the EvU-Perl, Environ.
Prot. Nat. Resour., 49 (2011) 382–387.
- E. Bezak-Mazur, R. Stoińska, Speciation of phosphorus in
wastewater sediments from selected wastewater treatment
plant, Ecol. Chem. Eng. A, 20 (2013) 503–514.
- J. Bień, Sewage Sludge, Theory and Practice (Częstochowa
Univ. of Tech., 2007).
- Determination of Phosphorus. Spectrophotometric Method
with Ammonium Molybdate. PN-EN ISO 6878:2004.
- L. Rönspieß, G. Nausch, D. Schulz-Bull, Bioavailability of various
phosphorus fractions and their seasonality in a eutrophic
estuary in the southern baltic sea – a laboratory approach,
Front. Mar. Sci., 8 (2021), doi: 10.3389/fmars.2021.715238.
- J.S. Park, H.M. Ro, Early-stage changes in chemical phosphorus
speciation induced by liming deforested soils, J. Soil Sci. Plant
Nutr., 18 (2018) 435–447.
- R.J. Haynes, Effects of liming on phosphate availability in acid
soils, Plant Soil, 68 (1982) 289–308.
- M. Simonsson, A. Östlund, L. Renfjäll, C. Sigtryggsson,
G. Börjesson, T. Kätterer, Pools and solubility of soil phosphorus
as affected by liming in long-term agricultural field experiments,
Geoderma, 315 (2018) 208–219.
- P. Johan, O. Ahmed, L. Omar, N. Hasbullah, Phosphorus
Transformation in Soils Following Co-Application of
Charcoal and Wood Ash, Agronomy, Malaysia, 2021.
- E. Bezak-Mazur, R. Stoińska, B. Szeląg, Dynamics of the annual
cycle changes in the bioavailable phosphorus forms share in
excess sludge, Desal. Water Treat., 199 (2020) 273–281.