References

  1. M. Huo, G. Zheng, L. Zhou, Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content, Bioresour. Technol., 168 (2014) 190–197.
  2. B. Bień, J.D. Bień, Conditioning of sewage sludge with physical, chemical and dual methods to improve sewage sludge dewatering, Energies, 14 (2021) 5079, doi: 10.3390/en14165079.
  3. B. Bień, J.D. Bień, Dewatering of sewage sludge conditioned with a combination of a ultrasonic field and chemical reagents, Desal. Water Treat., 199 (2020) 72–78.
  4. H. Yua, D. Zhang, L. Gu, H. Wen, N. Zhu, Coupling sludgebased biochar and electrolysis for conditioning and dewatering of sewage sludge: effect of char properties, Environ. Res., 214 (2022) 113974, doi: 10.1016/j.envres.2022.113974.
  5. B. Wu, X. Dai, X. Chai, Critical review on dewatering of sewage sludge: influential mechanism, conditioning technologies and implications to sludge re-utilizations, Water Res., 180 (2020) 115912, doi: 10.1016/j.watres.2020.115912.
  6. M.Q. Niu, W.J. Zhang, D.S. Wang, Y. Chen, R.L. Chen, Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants, Bioresour. Technol., 144 (2013) 337–343.
  7. Q. Wang, W. Zhang, Z. Yang, Q. Xu, P. Yang, D. Wang, Enhancement of anaerobic digestion sludge dewatering performance using in-situ crystallization in combination with cationic organic polymers flocculation, Water Res., 146 (2018) 19–29.
  8. E. Vega, H. Monclús, R. Gonzalez-Olmos, M.J. Martin, Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes, J. Environ. Manage., 150 (2015) 111–119.
  9. W.J. Zhang, P. Xiao, Y.Y. Liu, S.W. Xu, F. Xiao, D.S. Wang, C.W.K. Chow, Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability, Sep. Purif. Technol., 132 (2014) 430–437.
  10. Z. Chen, W. Zhang, D. Wang, T. Ma, R. Bai, D. Yu, Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical reflocculation, Water Res., 103 (2016) 170–181.
  11. J. Guo, Q. Gao, S. Jiang, Insight into dewatering behavior and heavy metals transformation during waste activated sludge treatment by thermally-activated sodium persulfate oxidation combined with a skeleton builder—wheat straw biochar, Chemosphere, 252 (2020) 126542, doi: 10.1016/j.chemosphere.2020.126542.
  12. Y. Wu, P. Zhang, H. Zhang, G. Zeng, J. Liu, J. Ye, W. Fang, X. Gou, Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride, Bioresour. Technol., 205 (2016) 258–263.
  13. Y. Wu, P. Zhang, G. Zeng, J. Liu, J. Ye, H. Zhang, W. Fang, Y. Li, Y. Fang, Combined sludge conditioning of microdisintegration, floc reconstruction and skeleton building (KMnO4/FeCl3/biochar) for enhancement of waste activated sludge dewaterability, J. Taiwan Inst. Chem. Eng., 74 (2017) 121–128.
  14. J. Wu, T. Lu, J. Bi, H. Yuan, Y. Chen, A novel sewage sludge biochar and ferrate synergetic conditioning for enhancing sludge dewaterability, Chemosphere, 237 (2019) 124339, doi: 10.1016/j.chemosphere.2019.07.070.
  15. Z. Guo, L. Ma, Q. Dai, X. Yang, R. Ao, J. Yang, J. Yang, W. Li, Modified corn-core powder for enhancing sludge dewaterability: synthesis, characterization and sludge dewatering performance, Chin. J. Chem. Eng., 32 (2021) 368–377.
  16. Ch. Zhu, P. Zhang, H. Wang, J. Ye, Conditioning of sewage sludge via combined ultrasonication-flocculation skeleton building to improve sludge dewaterability, Ultrason. Sonochem., 40 (2018) 353–360.
  17. B. Bień, The impact of coagulant PIX 113 modified by ultrasonic field on sewage sludge dewatering, Desal. Water Treat., 117 (2018) 175–180.
  18. M. Mobaraki, R.S. Semken, A. Mikkola, J. Pyrhonen, Enhanced sludge dewatering based on the application of high-power ultrasonic vibration, Ultrasonics, 84 (2018) 438–445.
  19. S. Hazrati, M. Farahbakhsa, A. Cerdà, G. Heydarpoor, Functionalization of ultrasound enhanced sewage sludgederived biochar: physicochemical improvement and its effects on soil enzyme activities and heavy metals availability, Chemosphere, 269 (2021) 128767, doi: 10.1016/j. chemosphere.2020.128767.
  20. Y. Wang, X. Wang, K. Zheng, H. Guo, L. Tian, T. Zhu, Y. Liu, Ultrasound-sodium percarbonate effectively promotes shortchain carboxylic acids production from sewage sludge through anaerobic fermentation, Bioresour. Technol., 364 (2022) 128024, doi: 10.1016/j.biortech.2022.128024.
  21. X. Li, Y. Liu, Q. Xu, X. Liu, X. Huang, J. Yang, D. Wang, Q. Wang, Y. Liu, Q. Yang, Enhanced methane production from waste activated sludge by combining calcium peroxide with ultrasonic: performance, mechanism, and implication, Bioresour. Technol., 279 (2019) 108–116.
  22. Q. Zhou, H. Sun, L. Jia, W. Wu, J. Wang, Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: a review, Chemosphere, 296 (2022) 134054, doi: 10.1016/j.chemosphere.2022.134054.
  23. G. Noriega-Hevia, J. Serralta, A. Seco, J. Ferrer, Economic analysis of the scale-up and implantation of a hollow fibre membrane contactor plant for nitrogen recovery in a full-scale wastewater treatment plant, Sep. Purif. Technol., 275 (2021) 119128, doi: 10.1016/j.seppur.2021.119128.
  24. R.A. Al-Juboori, J.U. Kaljunen, I. Righetto, A. Mikola, Membrane contactor onsite piloting for nutrient recovery from mesophilic digester reject water: the effect of process conditions and pretreatment options, Sep. Purif. Technol., 303 (2022) 122250, doi: 10.1016/j.seppur.2022.122250.
  25. Z. Bradford-Hartke, J. Lane, P. Lant, G. Leslie, Environmental benefits and burdens of phosphorus recovery from municipal wastewater, Environ. Sci. Technol., 49 (2015) 8611–8622.
  26. X. Hao, C. Wang, M.C.M. Loosdrecht, Y. Hu, Looking beyond struvite for P-recovery, Environ. Sci. Technol., 47 (2013) 4965–4966.
  27. V. Koskue, J.M. Rinta-Kanto, S. Freguia, P. Ledezma, M. Kokko, Optimising nitrogen recovery from reject water in a 3-chamber bioelectroconcentration cell, Sep. Purif. Technol., 264 (2021) 118428, doi: 10.1016/j.seppur.2021.118428.
  28. A. Tuszynska, K. Czerwionka, Nutrient recovery from deammonification effluent in a pilot study using two-step reject water treatment technology, Water Resour. Ind., 25 (2021) 100148, doi: 10.1016/j.wri.2021.100148.
  29. V. Díaz, J.C. Leyva-Díaz, M.C. Almécija, J.M. Poyatos, M. del Mar Muñío, J. Martín-Pascual, Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy, Bioresour. Technol., 363 (2022) 127968, doi: 10.1016/j.biortech.2022.127968.
  30. K. Zhou, M. Barjenbruch, C. Kabbe, G. Inial, C. Remy, Phosphorus recovery from municipal and fertilizer wastewater: China’s potential and perspective, J. Environ. Sci., 52 (2017) 151–159.
  31. M.M. Rahman, M.A.M. Salleh, U. Rashid, A. Ahsan, M.M. Hossain, C.S. Ra, Production of slow release crystal fertilizer from wastewaters through struvite crystallization: a review, Arabian J. Chem., 7 (2014) 139–155.
  32. D. Podstawczyk, A. Witek-Krowiak, A. Dawiec-Liśniewska, P. Chrobot, D. Skrzypczak, Removal of ammonium and orthophosphates from reject water generated during dewatering of digested sewage sludge in municipal wastewater treatment plant using adsorption and membrane contactor system, J. Cleaner Prod., 161 (2017) 277–287.
  33. D. Li, W. Li, D. Zhang, K. Zhang, L. Lv, G. Zhang, Performance and mechanism of modified biological nutrient removal process in treating low carbon-to-nitrogen ratio wastewater, Bioresour. Technol., 367 (2022) 128254, doi: 10.1016/j.biortech.2022.128254.
  34. M. Preisner, M. Smol, Investigating phosphorus loads removed by chemical and biological methods in municipal wastewater treatment plants in Poland, J. Environ. Manage., 322 (2022) 116058, doi: 10.1016/j.jenvman.2022.116058.
  35. H. Yang, J. Liu, P. Hu, L. Zou, Y.-Y. Li, Carbon source and phosphorus recovery from iron-enhanced primary sludge via anaerobic fermentation and sulfate reduction: performance and future application, Bioresour. Technol., 294 (2019) 122174, doi: 10.1016/j.biortech.2019.122174.
  36. F. Battista, G. Strazzera, F. Valentino, M. Gottardo, M. Villano, M. Matos, F. Silva, M.A.M. Reis, J. Mata-Alvarez, S. Astals, J. Dosta, R.J. Jones, J. Massanet-Nicolau, A. Guwy, P. Pavan, D. Bolzonella, M. Majone, New insights in food waste, sewage sludge and green waste anaerobic fermentation for short-chain volatile fatty acids production: a review, J. Environ. Chem. Eng., 10 (2022) 108319, doi: 10.1016/j.jece.2022.108319.
  37. A.P. da Cunha, M.C. Cammarota, I.V. Jr, Anaerobic co-digestion of sewage sludge and food waste: effect of pre-fermentation of food waste in bench- and pilot-scale digesters, Bioresour. Technol. Rep., 15 (2021) 100707, doi: 10.1016/j.biteb.2021.100707.
  38. E. Sperczyńska, Phosphates removal from reject water from digestion of sludge, Inżynieria Ekol, 48 (2016) 196–201.
  39. C.A. Quist-Jensen, J.M. Sørensen, A. Svenstrup, L. Scarpa, T.S. Carlsen, H.C. Jensen, L. Wybrandt, M.L. Christensen, Membrane crystallization for phosphorus recovery and ammonia stripping from reject water from sludge dewatering process, Desalination, 440 (2018) 156–160.
  40. B.M. Gonzalez-Silva, A. Nair, D.B. Fiksdal, J. Prestvik, S.W. Østerhus, Enhancing nutrient recovery by optimizing phosphorus stripping of bio-P sludge: experimental analysis and modeling, J. Water Process Eng., 48 (2022) 102857, doi: 10.1016/j.jwpe.2022.102857.
  41. M.T. Munir, B. Li, I. Boiarkina, S. Baroutian, W. Yu, B.R. Young, Phosphate recovery from hydrothermally treated sewage sludge using struvite precipitation, Bioresour. Technol., 239 (2017) 171–179.
  42. M.A. Saoudi, P. Dabert, F. Vedrenne, M.-L. Daumer, Mechanisms governing the dissolution of phosphorus and iron in sewage sludge by the bioacidification process and its correlation with iron phosphate speciation, Chemosphere, 307 (2022) 135704, doi: 10.1016/j.chemosphere.2022.135704.
  43. T. Hong, L. Wei, K. Cui, T. Chen, L. Luo, M. Fu, Q. Zhang, A constant composition technique for quantifying the effect of As(V) on struvite crystallization under various operational conditions, J. Cryst. Growth, 552 (2020) 125925, doi: 10.1016/j. jcrysgro.2020.125925.
  44. V. Koskue, V.-P. Pyrhonen, S. Freguia, P. Ledezma, M. Kokko, Modelling and techno-economic assessment of (bio) electrochemical nitrogen removal and recovery from reject water at full WWTP scale, J. Environ. Manage., 319 (2022) 115747, doi: 10.1016/j.jenvman.2022.115747.
  45. S. Şahinkaya, M.F. Sevimli, A. Aygün, Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods, Water Sci. Technol., 65 (2012) 1809–1816.
  46. S. Şahinkaya, M.F. Sevimli, Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion, Ultrason. Sonochem., 20 (2013) 587–594.
  47. J. Bandelin, T. Lippert, J.E. Drewes, K. Koch, Assessment of sonotrode and tube reactors for ultrasonic pre-treatment of two different sewage sludge types, Ultrason. Sonochem., 64 (2020) 105001, doi: 10.1016/j.ultsonch.2020.105001.
  48. M. Wójcik, F. Stachowicz, Influence of physical, chemical and dual sewage sludge conditioning methods on the dewatering efficiency, Powder Technol., 344 (2019) 96–102.
  49. Kemira PIX 123. Available at https://sciekiprzemyslowe.pl/chemia-do-oczyszczania-sciekow/kemira-pix-123-koagulantyzelazowe/ (Accessed on 14November 2022) (in Polish).
  50. 20-4-K-PIX_123-SIARCZAN_VI_ZELAZA_III_Xn.pdf (kemipol.com.pl) (Accessed on 14 November 2022).
  51. Zetag 8160. https://aniq.org.mx/pqta/pdf/ZETAG%208160%20 (HT).pdf (Accessed on 14 November 2022).
  52. PN-ISO 6060:2006. Available at http://sklep.pkn.pl/pn-iso-6060-2006p.html (Accessed on 14 November 2022) (in Polish).
  53. I. Zawieja. L. Wolny, Effect of ultrasonic processor power on sludge biodegradability, Rocznik Ochrona Środowiska, 13 (2011) 1719–1730.
  54. P. Zhang, G. Zhang, W. Wang, Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation, Bioresour. Technol., 98 (2007) 207–210.
  55. P. Battistoni, B. Paci, F. Fatone, P. Pavan, Phosphorus removal from anaerobic supernatants: start-up and steady-state conditions of a fluidized bed reactor full-scale plant, Ind. Eng. Chem. Res., 45 (2006) 663–669.
  56. W. Ren, Z. Zhou, L. Wan, D. Hu, L.M. Jiang, L. Wang, Optimization of phosphorus removal from reject water of sludge thickening and dewatering process through struvite precipitation, Desal. Water Treat., 57 (2016) 15515–15523.
  57. Y. Yang, Y.Q. Zhao, A.O. Babatunde, P. Kearney, Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge, Water Sci. Technol., 60 (2009) 3181–3188.
  58. B. Bień, J.D. Bień, Analysis of reject water formed in the mechanical dewatering process of digested sludge conditioned by physical and chemical methods, Energies, 15 (2022) 1678, doi: 10.3390/en15051678.