References
- M. Huo, G. Zheng, L. Zhou, Enhancement of the dewaterability
of sludge during bioleaching mainly controlled by microbial
quantity change and the decrease of slime extracellular
polymeric substances content, Bioresour. Technol., 168 (2014)
190–197.
- B. Bień, J.D. Bień, Conditioning of sewage sludge with physical,
chemical and dual methods to improve sewage sludge
dewatering, Energies, 14 (2021) 5079, doi: 10.3390/en14165079.
- B. Bień, J.D. Bień, Dewatering of sewage sludge conditioned
with a combination of a ultrasonic field and chemical reagents,
Desal. Water Treat., 199 (2020) 72–78.
- H. Yua, D. Zhang, L. Gu, H. Wen, N. Zhu, Coupling sludgebased
biochar and electrolysis for conditioning and dewatering
of sewage sludge: effect of char properties, Environ. Res.,
214 (2022) 113974, doi: 10.1016/j.envres.2022.113974.
- B. Wu, X. Dai, X. Chai, Critical review on dewatering of sewage
sludge: influential mechanism, conditioning technologies and
implications to sludge re-utilizations, Water Res., 180 (2020)
115912, doi: 10.1016/j.watres.2020.115912.
- M.Q. Niu, W.J. Zhang, D.S. Wang, Y. Chen, R.L. Chen,
Correlation of physicochemical properties and sludge dewaterability
under chemical conditioning using inorganic coagulants,
Bioresour. Technol., 144 (2013) 337–343.
- Q. Wang, W. Zhang, Z. Yang, Q. Xu, P. Yang, D. Wang,
Enhancement of anaerobic digestion sludge dewatering
performance using in-situ crystallization in combination with
cationic organic polymers flocculation, Water Res., 146 (2018)
19–29.
- E. Vega, H. Monclús, R. Gonzalez-Olmos, M.J. Martin,
Optimizing chemical conditioning for odour removal of
undigested sewage sludge in drying processes, J. Environ.
Manage., 150 (2015) 111–119.
- W.J. Zhang, P. Xiao, Y.Y. Liu, S.W. Xu, F. Xiao, D.S. Wang,
C.W.K. Chow, Understanding the impact of chemical
conditioning with inorganic polymer flocculants on soluble
extracellular polymeric substances in relation to the sludge
dewaterability, Sep. Purif. Technol., 132 (2014) 430–437.
- Z. Chen, W. Zhang, D. Wang, T. Ma, R. Bai, D. Yu, Enhancement
of waste activated sludge dewaterability using calcium
peroxide pre-oxidation and chemical reflocculation, Water Res.,
103 (2016) 170–181.
- J. Guo, Q. Gao, S. Jiang, Insight into dewatering behavior
and heavy metals transformation during waste activated
sludge treatment by thermally-activated sodium persulfate
oxidation combined with a skeleton builder—wheat straw
biochar, Chemosphere, 252 (2020) 126542, doi: 10.1016/j.chemosphere.2020.126542.
- Y. Wu, P. Zhang, H. Zhang, G. Zeng, J. Liu, J. Ye, W. Fang,
X. Gou, Possibility of sludge conditioning and dewatering
with rice husk biochar modified by ferric chloride, Bioresour.
Technol., 205 (2016) 258–263.
- Y. Wu, P. Zhang, G. Zeng, J. Liu, J. Ye, H. Zhang, W. Fang,
Y. Li, Y. Fang, Combined sludge conditioning of microdisintegration,
floc reconstruction and skeleton building
(KMnO4/FeCl3/biochar) for enhancement of waste activated
sludge dewaterability, J. Taiwan Inst. Chem. Eng., 74 (2017)
121–128.
- J. Wu, T. Lu, J. Bi, H. Yuan, Y. Chen, A novel sewage sludge
biochar and ferrate synergetic conditioning for enhancing
sludge dewaterability, Chemosphere, 237 (2019) 124339,
doi: 10.1016/j.chemosphere.2019.07.070.
- Z. Guo, L. Ma, Q. Dai, X. Yang, R. Ao, J. Yang, J. Yang, W. Li,
Modified corn-core powder for enhancing sludge dewaterability:
synthesis, characterization and sludge dewatering
performance,
Chin. J. Chem. Eng., 32 (2021) 368–377.
- Ch. Zhu, P. Zhang, H. Wang, J. Ye, Conditioning of sewage sludge
via combined ultrasonication-flocculation skeleton building to
improve sludge dewaterability, Ultrason. Sonochem., 40 (2018)
353–360.
- B. Bień, The impact of coagulant PIX 113 modified by ultrasonic
field on sewage sludge dewatering, Desal. Water Treat.,
117 (2018) 175–180.
- M. Mobaraki, R.S. Semken, A. Mikkola, J. Pyrhonen, Enhanced
sludge dewatering based on the application of high-power
ultrasonic vibration, Ultrasonics, 84 (2018) 438–445.
- S. Hazrati, M. Farahbakhsa, A. Cerdà, G. Heydarpoor,
Functionalization of ultrasound enhanced sewage sludgederived
biochar: physicochemical improvement and
its effects on soil enzyme activities and heavy metals
availability, Chemosphere, 269 (2021) 128767, doi: 10.1016/j.
chemosphere.2020.128767.
- Y. Wang, X. Wang, K. Zheng, H. Guo, L. Tian, T. Zhu, Y. Liu,
Ultrasound-sodium percarbonate effectively promotes shortchain
carboxylic acids production from sewage sludge through
anaerobic fermentation, Bioresour. Technol., 364 (2022) 128024,
doi: 10.1016/j.biortech.2022.128024.
- X. Li, Y. Liu, Q. Xu, X. Liu, X. Huang, J. Yang, D. Wang,
Q. Wang, Y. Liu, Q. Yang, Enhanced methane production
from waste activated sludge by combining calcium peroxide
with ultrasonic: performance, mechanism, and implication,
Bioresour. Technol., 279 (2019) 108–116.
- Q. Zhou, H. Sun, L. Jia, W. Wu, J. Wang, Simultaneous biological
removal of nitrogen and phosphorus from secondary effluent
of wastewater treatment plants by advanced treatment:
a review, Chemosphere, 296 (2022) 134054, doi: 10.1016/j.chemosphere.2022.134054.
- G. Noriega-Hevia, J. Serralta, A. Seco, J. Ferrer, Economic
analysis of the scale-up and implantation of a hollow fibre
membrane contactor plant for nitrogen recovery in a full-scale
wastewater treatment plant, Sep. Purif. Technol., 275 (2021)
119128, doi: 10.1016/j.seppur.2021.119128.
- R.A. Al-Juboori, J.U. Kaljunen, I. Righetto, A. Mikola, Membrane
contactor onsite piloting for nutrient recovery from mesophilic
digester reject water: the effect of process conditions and pretreatment
options, Sep. Purif. Technol., 303 (2022) 122250,
doi: 10.1016/j.seppur.2022.122250.
- Z. Bradford-Hartke, J. Lane, P. Lant, G. Leslie, Environmental
benefits and burdens of phosphorus recovery from municipal
wastewater, Environ. Sci. Technol., 49 (2015) 8611–8622.
- X. Hao, C. Wang, M.C.M. Loosdrecht, Y. Hu, Looking beyond
struvite for P-recovery, Environ. Sci. Technol., 47 (2013)
4965–4966.
- V. Koskue, J.M. Rinta-Kanto, S. Freguia, P. Ledezma, M. Kokko,
Optimising nitrogen recovery from reject water in a 3-chamber
bioelectroconcentration cell, Sep. Purif. Technol., 264 (2021)
118428, doi: 10.1016/j.seppur.2021.118428.
- A. Tuszynska, K. Czerwionka, Nutrient recovery from
deammonification effluent in a pilot study using two-step
reject water treatment technology, Water Resour. Ind., 25 (2021)
100148, doi: 10.1016/j.wri.2021.100148.
- V. Díaz, J.C. Leyva-Díaz, M.C. Almécija, J.M. Poyatos, M. del
Mar Muñío, J. Martín-Pascual, Microalgae bioreactor for
nutrient removal and resource recovery from wastewater in the
paradigm of circular economy, Bioresour. Technol., 363 (2022)
127968, doi: 10.1016/j.biortech.2022.127968.
- K. Zhou, M. Barjenbruch, C. Kabbe, G. Inial, C. Remy,
Phosphorus recovery from municipal and fertilizer wastewater:
China’s potential and perspective, J. Environ. Sci., 52 (2017)
151–159.
- M.M. Rahman, M.A.M. Salleh, U. Rashid, A. Ahsan,
M.M. Hossain, C.S. Ra, Production of slow release crystal
fertilizer from wastewaters through struvite crystallization:
a review, Arabian J. Chem., 7 (2014) 139–155.
- D. Podstawczyk, A. Witek-Krowiak, A. Dawiec-Liśniewska,
P. Chrobot, D. Skrzypczak, Removal of ammonium and
orthophosphates from reject water generated during
dewatering of digested sewage sludge in municipal wastewater
treatment plant using adsorption and membrane contactor
system, J. Cleaner Prod., 161 (2017) 277–287.
- D. Li, W. Li, D. Zhang, K. Zhang, L. Lv, G. Zhang, Performance
and mechanism of modified biological nutrient removal
process in treating low carbon-to-nitrogen ratio wastewater,
Bioresour. Technol., 367 (2022) 128254, doi: 10.1016/j.biortech.2022.128254.
- M. Preisner, M. Smol, Investigating phosphorus loads removed
by chemical and biological methods in municipal wastewater
treatment plants in Poland, J. Environ. Manage., 322 (2022)
116058, doi: 10.1016/j.jenvman.2022.116058.
- H. Yang, J. Liu, P. Hu, L. Zou, Y.-Y. Li, Carbon source and
phosphorus recovery from iron-enhanced primary sludge via
anaerobic fermentation and sulfate reduction: performance
and future application, Bioresour. Technol., 294 (2019) 122174,
doi: 10.1016/j.biortech.2019.122174.
- F. Battista, G. Strazzera, F. Valentino, M. Gottardo, M. Villano,
M. Matos, F. Silva, M.A.M. Reis, J. Mata-Alvarez, S. Astals,
J. Dosta, R.J. Jones, J. Massanet-Nicolau, A. Guwy, P. Pavan,
D. Bolzonella, M. Majone, New insights in food waste, sewage
sludge and green waste anaerobic fermentation for short-chain
volatile fatty acids production: a review, J. Environ. Chem. Eng.,
10 (2022) 108319, doi: 10.1016/j.jece.2022.108319.
- A.P. da Cunha, M.C. Cammarota, I.V. Jr, Anaerobic co-digestion
of sewage sludge and food waste: effect of pre-fermentation
of food waste in bench- and pilot-scale digesters, Bioresour.
Technol. Rep., 15 (2021) 100707, doi: 10.1016/j.biteb.2021.100707.
- E. Sperczyńska, Phosphates removal from reject water from
digestion of sludge, Inżynieria Ekol, 48 (2016) 196–201.
- C.A. Quist-Jensen, J.M. Sørensen, A. Svenstrup, L. Scarpa,
T.S. Carlsen, H.C. Jensen, L. Wybrandt, M.L. Christensen,
Membrane crystallization for phosphorus recovery and
ammonia stripping from reject water from sludge dewatering
process, Desalination, 440 (2018) 156–160.
- B.M. Gonzalez-Silva, A. Nair, D.B. Fiksdal, J. Prestvik,
S.W. Østerhus, Enhancing nutrient recovery by optimizing
phosphorus stripping of bio-P sludge: experimental analysis
and modeling, J. Water Process Eng., 48 (2022) 102857,
doi: 10.1016/j.jwpe.2022.102857.
- M.T. Munir, B. Li, I. Boiarkina, S. Baroutian, W. Yu, B.R. Young,
Phosphate recovery from hydrothermally treated sewage
sludge using struvite precipitation, Bioresour. Technol.,
239 (2017) 171–179.
- M.A. Saoudi, P. Dabert, F. Vedrenne, M.-L. Daumer, Mechanisms
governing the dissolution of phosphorus and iron in sewage
sludge by the bioacidification process and its correlation with
iron phosphate speciation, Chemosphere, 307 (2022) 135704,
doi: 10.1016/j.chemosphere.2022.135704.
- T. Hong, L. Wei, K. Cui, T. Chen, L. Luo, M. Fu, Q. Zhang,
A constant composition technique for quantifying the effect
of As(V) on struvite crystallization under various operational
conditions, J. Cryst. Growth, 552 (2020) 125925, doi: 10.1016/j.
jcrysgro.2020.125925.
- V. Koskue, V.-P. Pyrhonen, S. Freguia, P. Ledezma,
M. Kokko, Modelling and techno-economic assessment of (bio)
electrochemical nitrogen removal and recovery from reject
water at full WWTP scale, J. Environ. Manage., 319 (2022)
115747, doi: 10.1016/j.jenvman.2022.115747.
- S. Şahinkaya, M.F. Sevimli, A. Aygün, Improving the sludge
disintegration efficiency of sonication by combining with
alkalization and thermal pre-treatment methods, Water Sci.
Technol., 65 (2012) 1809–1816.
- S. Şahinkaya, M.F. Sevimli, Sono-thermal pre-treatment
of waste activated sludge before anaerobic digestion,
Ultrason. Sonochem., 20 (2013) 587–594.
- J. Bandelin, T. Lippert, J.E. Drewes, K. Koch, Assessment of
sonotrode and tube reactors for ultrasonic pre-treatment of two
different sewage sludge types, Ultrason. Sonochem., 64 (2020)
105001, doi: 10.1016/j.ultsonch.2020.105001.
- M. Wójcik, F. Stachowicz, Influence of physical, chemical
and dual sewage sludge conditioning methods on the
dewatering efficiency, Powder Technol., 344 (2019) 96–102.
- Kemira PIX 123. Available at https://sciekiprzemyslowe.pl/chemia-do-oczyszczania-sciekow/kemira-pix-123-koagulantyzelazowe/
(Accessed on 14November 2022) (in Polish).
- 20-4-K-PIX_123-SIARCZAN_VI_ZELAZA_III_Xn.pdf
(kemipol.com.pl) (Accessed on 14 November 2022).
- Zetag 8160. https://aniq.org.mx/pqta/pdf/ZETAG%208160%20
(HT).pdf (Accessed on 14 November 2022).
- PN-ISO 6060:2006. Available at http://sklep.pkn.pl/pn-iso-6060-2006p.html (Accessed on 14 November 2022) (in Polish).
- I. Zawieja. L. Wolny, Effect of ultrasonic processor power
on sludge biodegradability, Rocznik Ochrona Środowiska,
13 (2011) 1719–1730.
- P. Zhang, G. Zhang, W. Wang, Ultrasonic treatment of
biological sludge: floc disintegration, cell lysis and inactivation,
Bioresour. Technol., 98 (2007) 207–210.
- P. Battistoni, B. Paci, F. Fatone, P. Pavan, Phosphorus removal
from anaerobic supernatants: start-up and steady-state
conditions of a fluidized bed reactor full-scale plant, Ind. Eng.
Chem. Res., 45 (2006) 663–669.
- W. Ren, Z. Zhou, L. Wan, D. Hu, L.M. Jiang, L. Wang,
Optimization of phosphorus removal from reject water of
sludge thickening and dewatering process through struvite
precipitation, Desal. Water Treat., 57 (2016) 15515–15523.
- Y. Yang, Y.Q. Zhao, A.O. Babatunde, P. Kearney, Two strategies
for phosphorus removal from reject water of municipal
wastewater treatment plant using alum sludge, Water Sci.
Technol., 60 (2009) 3181–3188.
- B. Bień, J.D. Bień, Analysis of reject water formed in the
mechanical dewatering process of digested sludge conditioned
by physical and chemical methods, Energies, 15 (2022) 1678,
doi: 10.3390/en15051678.