References
- S.J. Cañote, R.M. Barros, E.E.S. Lora, O.A. del Olmo, I.F.S. dos
Santos, J.A.V. Piñas, H.L. Castro e Silva, Energy and economic
evaluation of the production of biogas from anaerobic and
aerobic sludge in Brazil, Waste Biomass Valorization, 12 (2021)
947–969.
- J.P. Brans, Y. De Smet, PROMETHEE Methods, In: Multiple
Criteria Decision Analysis, Springer, New York, 2016,
pp. 187–219.
- European Commission, A New Circular Economy Action
Plan: For a Cleaner and More Competitive Europe,
European Commission: Brussels, Belgium, 2020. Available
at https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri
=CELEX:52020DC0098&from=EN (Accessed on 15
October 2022).
- D. Fytili, A. Zabaniotou, Utilization of sewage sludge in EU
application of old and new methods—a review, Renewable
Sustainable Energy Rev., 12 (2008) 116–140.
- European Commission, Eurostat, Sewage Sludge Production
and Disposal, 2022. Available at https://ec.europa.eu/eurostat/databrowser/view/env_ww_spd/default/table?lang=en
(Accessed on 15 October 2022).
- Statistics Poland, Environment, Warsaw 2021. Available at
https://stat.gov.pl/en/topics/environment-energy/environment/environment-2021,1,13.html (Accessed on 17 October 2022).
- Y. Lorenzo-Toja, I. Vázquez-Rowe, M.J. Amores, M. Termes-Rifé, D. Marín-Navarro, M.T. Moreira, G. Feijoo, Benchmarking
wastewater treatment plants under an eco-efficiency
perspective, Sci. Total Environ., 566 (2016) 468–479.
- M. Abbasi, M.A. Abduli, B. Omidvar, A. Baghvand, Results
uncertainty of support vector machine and hybrid of wavelet
transform-support vector machine models for solid waste
generation forecasting, Environ. Prog. Sustainable Energy,
33 (2014) 220–228.
- K.P. Wai, M.Y. Chia, C.H. Koo, Y.F. Huang, W.C. Chong,
Applications of deep learning in water quality management:
a state-of-the-art review, J. Hydrol., 613 (2022) 128332,
doi: 10.1016/j.jhydrol.2022.128332.
- S. Ahmad, I.H. Khan, B. Parida, Performance of stochastic
approaches for forecasting river water quality, Water Resour.,
35 (2001) 4261–4266.
- A. Taheri Tizro, M. Ghashghaie, P. Georgiou, K. Voudouris,
Time series analysis of water quality parameters, J. Appl. Res.
Water Wastewater, 1 (2014) 40–50.
- A. Katimon, S. Shahid, M. Mohsenipour, Modeling water
quality and hydrological variables using ARIMA: a case study
of Johor River, Malaysia, Sustainable Water Resour. Manage.,
4 (2018) 991–998.
- D.O. Faruk, A hybrid neural network and ARIMA model for
water quality time series prediction, Eng. Appl. Artif. Intell.,
23 (2010) 586–594.
- A. Sentas, A. Psilovikos, T. Psilovikos, N. Matzafleri, Comparison
of the performance of stochastic models in forecasting daily
dissolved oxygen data in dam-Lake Thesaurus, Desal.
Water Treat., 57 (2016) 11660–11674.
- K.P. Oliveira-Esquerre, D.E. Seborg, M. Mori, R.E. Bruns,
Application of steady-state and dynamic modeling for the
prediction of the BOD of an aerated lagoon at a pulp and paper
mill: Part II. Non-linear approaches, Chem. Eng. J., 105 (2004)
61–69.
- E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial
neural networks to estimate wastewater treatment plant inlet
biochemical oxygen demand, Environ. Prog., 27 (2008) 439–446.
- T.Y. Pai, Y.P. Tsai, H.M. Lo, C.H. Tsai, C.Y. Lin, Grey and neural
network prediction of suspended solids and chemical oxygen
demand in hospital wastewater treatment plant effluent,
Comput. Chem. Eng., 31 (2007) 1272–1281.
- M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction
of wastewater treatment plant performance using artificial
neural networks, Environ. Modell. Software, 19 (2004) 919–928.
- F. Tufaner, Y. Demirci, Prediction of biogas production rate
from anaerobic hybrid reactor by artificial neural network
and non-linear regressions models, Clean Technol. Environ.
Policy, 22 (2020) 713–724.
- N.E. Mougari, J.F. Largeau, N. Himrane, M. Hachemi,
M. Tazerout, Application of artificial neural network and
kinetic modeling for the prediction of biogas and methane
production in anaerobic digestion of several organic wastes,
Int. J. Green Energy, 18 (2021) 1584–1596.
- H. Şenol, Methane yield prediction of ultrasonic pretreated
sewage sludge by means of an artificial neural network,
Energy, 215 (2021) 119173, doi: 10.1016/j.energy.2020.119173.
- X. Wei, A. Kusiak, Optimization of Biogas Production Process
in a Wastewater Treatment Plant, Proceedings of the 62nd IIE
Annual Conference and Expo, 2012, pp. 1432–1440.
- P. Sakiewicz, K. Piotrowski, J. Ober, J. Karwot, Innovative
artificial neural network approach for integrated biogas
– wastewater treatment system modelling: effect of plant
operating parameters on process intensification, Renewable
Sustainable Energy Rev., 124 (2020) 109784, doi: 10.1016/j.rser.2020.109784.
- J. Gonçalves Neto, L. Vidal Ozorio, T.C. Campos de Abreu,
B. Ferreira dos Santos, F. Pradelle, Modeling of biogas
production from food, fruits and vegetables wastes using
artificial neural network (ANN), Fuel, 285 (2021) 119081,
doi: 10.1016/j.fuel.2020.119081.
- F. Almomani, Prediction of biogas production from chemically
treated co-digested agricultural waste using artificial
neural network, Fuel, 280 (2020) 118573, doi: 10.1016/j.fuel.2020.118573.
- I.S. Baruch, P. Georgieva, J. Barrera-Cortes, S. Feyo de Azevedo,
Adaptive recurrent neural network control of biological
wastewater treatment, Int. J. Intell. Syst., Special Issue:
Soft Computing for Modeling, Simulation, and Control of
Non-linear Dynamical Systems, 20 (2005) 173–193.
- H. Han, S. Zhu, J. Qiao, M. Guo, Data-driven intelligent
monitoring system for key variables in wastewater treatment
process, Chin. J. Chem. Eng., 26 (2018) 2093–2101.
- J.F. Qiao, G.T. Han, H.G. Han, C.L. Yang, W. Li, Decoupling
control for wastewater treatment process based on recurrent
fuzzy neural network, Asian J. Control, 21 (2019) 1270–1280.
- Z. Wang, Y. Man, Y. Hu, J. Li, M. Hong, P. Cui, A deep learning
based dynamic COD prediction model for urban sewage,
Environ. Sci. Water Res. Technol., 5 (2019) 2210–2218.
- I. Groenen, Representing Seasonal Patterns in Gated Recurrent
Neural Networks for Multivariate Time Series Forecasting
(Doctoral Dissertation, Master Thesis), 2018.
- G.P. Zhang, Time series forecasting using a hybrid ARIMA
and neural network model, Neurocomputing, 50 (2003)
159–175.
- E. Rahnamaa, O. Bazrafshana, G. Asadollahfardib, S.Y. Samadi,
Comparison of Box–Jenkin time series and radial basis
function for sodium adsorption rate forecasting; a case study
Aras, Sefidrud, Karun, and Mond Rivers, Desal. Water Treat.,
218 (2021) 193–209.
- G.E.P. Box, G. Jenkins, Time Series Analysis, Forecasting and
Control, Holden-Day, San Francisco, CA, 1970.
- N. Farhi, E. Kohen, H. Mamane, Y. Shavitt, Prediction of
wastewater treatment quality using LSTM neural network,
Environ. Technol. Innovation, 23 (2021) 101632, doi: 10.1016/j.eti.2021.101632.
- L.R. de Araújo Morais, G.S. da Silva Gomes, Forecasting
daily Covid-19 cases in the world with a hybrid ARIMA and
neural network model, Appl. Soft Comput., 126 (2022) 109315,
doi: 10.1016/j.asoc.2022.109315.
- I.S. Markham, T.R. Rakes, The effect of sample size and
variability of data on the comparative performance of artificial
neural networks and regression, Comput. Oper. Res., 25 (1998)
251–263.
- J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical
Learning, Springer Series in Statistics, Springer, New York,
NY, 2001
- F. Chollet, Keras: The Python Deep Learning Library,
Astrophysics Source Code Library, ASCL-1806, Astrophysics
Data System - About ADS (harvard.edu), 2018.