References

  1. A.A. Abokifa, Y.J. Yang. C.S. Lo, P. Biswas, Water quality modeling in the dead end sections of drinking water distribution networks, Water Res., 89 (2015) 107–117.
  2. A.A. Abokifa, A. Maheshwari, R.D. Gudi, P. Biswas, Influence of dead-end sections of drinking water distribution networks on optimization of booster chlorination systems, J. Water Resour. Plann. Manage., 145 (2019) 04019053, doi: 10.1061/(ASCE) WR.1943-5452.0001125.
  3. M. Mrowiec. T. Herczyk, E. Kuliński, Analysis of the variability of drinking water quality parameters in the distribution system, Inżynieria i Ochr Środ, 19 (2016) 2735 (in Polish).
  4. U. Olsińska, K. Skibińska, Modeling of water quality changes in the system, Ochr. Środ., 29 (2007) 33–40 (in Polish).
  5. N. New, Z.S. Kazama, S. Takizawa, Network model analysis of residual chlorine to reduce disinfection byproducts in water supply systems in Yangon city, Myanmar, Water, 13 (2021) 2921, doi: 10.3390/w13202921.
  6. Y. Im, G. Song, J. Lee, M. Cho, Deep learning methods for predicting tap-water quality time series in South Korea, Water, 14 (2022) 3766, doi: 10.3390/w14223766.
  7. D. Papciak, A. Domoń, M. Zdeb, B. Tchórzewska-Cieślak, J. Konkol, E. Sočo, Mechanism of biofilm formation on installation materials and its impact on the quality of tap water, Water, 14 (2022) 2401, doi: 10.3390/w14152401.
  8. H. Hotloś, Research on changes in water consumption in selected Polish cities in the years 1990–2008, Ochr. Środ., 32 (2010) 39–42 (in Polish).
  9. H. Kłoss-Trębaczkiewicz, E. Osuch-Pajdzińska, Analysis of trends in water consumption in Polish cities, Ochr. Środ., 27 (2005) 63–67 (in Polish).
  10. K. Gonelas, A. Chondronasios, V. Kanakoudis, M. Patelis, P. Korkana, Forming DMAs in a water distribution network considering the operating pressure and the chlorine residual concentration as the design parameters, Hydroinformatics, 19 (2017) 900–910.
  11. A. Chondronasios, K. Gonelas, V. Kanakoudis, M. Patelis, P. Korkana, Optimizing DMAs’ formation in a water pipe network: the water aging and the operating pressure factors, Hydroinformatics, 19 (2017) 890–899.
  12. M. Patelis, V. Kanakoudis, A. Kravvari, Pressure regulation vs. water aging in water distribution networks, Water, 12 (2020) 1323, doi: 10.3390/w12051323.
  13. N. Liu, T. Skauge, D. Landa-Marbán, B. Hovland, B. Thorbjørnsen, F.A. Radu, B.F. Vik, T. Baumann, G. Bødtker, Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels, J. Ind. Microbiol. Biotechnol., 46 (2019) 855–868.
  14. S.E. Smith, D.M. Holt, A. Delanoue, J.S. Colbourne, A.H.L. Chamberlain, B.J. Lloyd, A pipeline testing facility for the examination of pipe-wall deposits and red-water events in drinking water, Water Environ. J. Promot. Sustainable Solut., 13 (1999) 7–15.
  15. B. Barbeau, K. Julienne, A. Carriere, V. Gauthier, Dead-end flushing of a distribution system: short and long-term effects on water quality, J. Water Supply Res. Technol. AQUA, 54 (2005) 371–383.
  16. F. Ling, R. Whitaker, M.W. LeChevallier, W.T. Liu, Drinking water microbiome assembly induced by water stagnation, ISME J., 12 (2018) 1520–1531.
  17. Z. Liu, Y.E. Lin, J.E. Stout, C.C. Hwang, R.D. Vidic, V.L. Yu, Effect of flow regimes on the presence of Legionella within the biofilm of a model plumbing system, J. Appl. Microbiol., 101 (2006) 437–442.
  18. L. Zlatanović, J.P. van der Hoek, J.H.G. Vreeburg, An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system, Water Res., 123 (2017) 761–772.
  19. J.T. Carter, Y. Lee, S.G. Buchberger, Correlations between travel time and water quality in a dead end loop, Proc. Wat. Qual. Technol. Conf. Am. Wat. Wks Assoc., Denver, Co, USA, November 9–12 (1997).
  20. V. Kanakoudis, S. Tsitsifli, Potable water security assessment – a review on monitoring, modelling and optimization techniques, applied to water distribution networks, Desal. Water Treat., 99 (2017) 18–26.
  21. V. Kanakoudis, Determining hazards’ prevention critical control points in water supply systems, Environ. Sci. Proc., 2 (2020) 53, doi: 10.3390/environsciproc2020002053.
  22. S, Monarca, C. Zani, S. Richardson, A.D. Thruston Jr., M. Moretti, D. Feretti, M. Villarini, A new approach to evaluating the toxicity and genotoxicity of disinfected drinking water, Water Res., 38 (2004) 3809–3819.
  23. M.A. Brown, G.L. Emmert, On-line monitoring of trihalomethane concentrations in drinking water distribution systems using capillary membrane sampling-gas chromatography, Anal. Chim. Acta, 555 (2006) 75–83.
  24. G. Hua, D.A. Reckhow, Comparison of disinfection by-product formation from chlorine and alternative disinfectants, Water Res., 41 (2007) 1667–1678.
  25. V. Uyak, K Ozdemir, I. Toroz, Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs, Sci. Total Environ., 378 (2007) 269–280.
  26. K.P. Cantor, D.F. Lynch, M.E. Hildesheim, M. Dosemeci, J. Lubin, M. Alvanja, G. Craun, Drinking water source and chlorination by products, risk bladder cancer, Epidemiology, 9 (1998) 21–28.
  27. WHO, Guidelines for Drinking-Water Quality, Vol. 1, Recommendations, 3rd ed., World Health Organization, Geneva, 2004.
  28. S.W. Krasner, H.S. Weinberg, S.D. Richardson, S.J. Pastor, R. Chinn, M.J. Sclimenti, G.D. Onstad, A.D. Thruston Jr., Occurrence of a new generation of disinfection by-products, Environ. Sci. Technol., 40 (2006) 75–85.
  29. S.D. Richardson, M.J. Plewal, E.D. Wagner, R. Schoeny, D.M. Demarini, Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research, Mutat. Res., 636 (2007) 178–242.
  30. J.G. Uber, R.S. Summers, D.L. Boccelli, M.E. Tryby, Maintaining Distribution System Residuals Through Booster Chlorination, AWWA Research Foundation, Denver, 2001.
  31. M.E. Tryby, D.M. Boccelli, J. Uber, L.A. Rossman, A facility location model for booster disinfection of water supply networks, J. Water Resour. Plann. Manage., 128 (2002) 322–333.
  32. M. Propato, J.G. Uber, Linear least-squares formulation for operation of booster disinfection systems, J. Water Resour. Plann. Manage., 130 (2004) 53–62.
  33. I. Nouiri, F. Lebdi, Genetic algorithm (GA) for optimal choice of chlorine booster stations in drinking water networks, J. Water Sci., 19 (2006) 47–55.
  34. I. Nouiri, Optimal design and management of chlorination in drinking water networks: a multi-objective approach using Genetic Algorithms and the Pareto optimality concept, Appl. Water Sci., 7 (2017) 3527–3538.
  35. J.D.P. Sandoval, B.M. Brentan, G.M. Lima, D.H. Cervantes, D.A. García Cervantes, H.M. Ramos, X. Delgado Galván, J. de Jesús Mora Rodríguez, Optimal placement and operation of chlorine booster stations: a multi‐level optimization approach, Energies, 14 (2021) 5806, doi: 10.3390/en14185806.
  36. K. Xin, X. Zhou, H. Qian, H. Yan, T. Tao, Chlorine-age based booster chlorination optimization in water distribution network considering the uncertainty of residuals, Water Supply, 19 (2019) 796–807.
  37. M.A. Al-Zahrani, Optimizing dosage and location of chlorine injection in water supply networks, Arabian J. Sci. Eng., 41 (2016) 4207–4215.
  38. W. Kurek, M.A. Brdys, Optimised allocation of chlorination stations by multi-objective genetic optimisation for quality control in drinking water distribution systems, IFAC Proc. Vol., 39 (2006) 232–237.
  39. J. Rayner, T. Yates, M. Joseph, D. Lantagneet, Sustained effectiveness of automatic chlorinators installed in communityscale water distribution systems during an emergency recovery project in Haiti, J. Water Sanit. Hyg. Dev., 6 (2016) 602–612.
  40. C. Null, C.P. Stewart, A.J. Pickering, H.N. Dentz, B.F. Arnold, C.D. Arnold, J. Benjamin-Chung, T. Clasen, K.G. Dewey, L.C.H. Fernald, A.E. Hubbard, P. Kariger, A. Lin, S.P. Luby, A. Mertens, S.M. Njenga, G. Nyambane, P.K. Ram, J.M. Colford Jret, Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Kenya: a cluster-randomised controlled trial, LANCET Global Health, 6 (2018) 316–329.
  41. A.J. Pickering, Y. Crider, S. Sultana, J. Swarthout, F.Gb. Goddard, S.A. Islam, S. Sen, R. Ayyagari, S.P. Luby, Effect of in-line drinking water chlorination at the point of collection on child diarrhoea in urban Bangladesh: a double-blind, clusterrandomised controlled trial, LANCET Global Health, 7 (2019) 1247–1256.
  42. V.G. Tzatchkov, A.A. Aldama, F.I. Arreguin, Advection dispersion reaction modeling in water distribution networks, J. Water Resour. Plann. Manage., 128 (2002) 334–342.
  43. U. Simunič, P. Pipp, M. Dular, D. Stopar, The limitations of hydrodynamic removal of biofilms from the dead-ends in a model drinking water distribution system, Water Res., 178 (2020) 115838, doi: 10.1016/j.watres.2020.115838.
  44. J.W. Costerton, Bacterial biofilms: a common cause of persistent infections, Science, 284 (1999) 1318–1322.
  45. T.-F.C. Mah, G.A. O’Toole, Mechanisms of biofilm resistance to antimicrobial agents, Trends Microbiol., 9 (2001) 34–39.
  46. P.S. Stewart, Antimicrobial tolerance in biofilms, Microbiol. Spec., 3 (2015),
    doi: 10.1128/microbiolspec.mb-0010–2014.
  47. D. Kowalski, B. Kowalska, K. Boryczko, Water Circulation System in Dead End Pipes of the Water Supply Network, Patent Application P 439278, Urząd Patentowy RP, 2021 (in Polish).
  48. D. Kowalski, B. Kowalska, K. Boryczko, Valve Connection System, Patent Application P439280, Urząd Patentowy RP, 2021 (in Polish).
  49. D. Kowalski, B. Kowalska, K. Boryczko, Water Supply Tee, Patent Application P439279, Urząd Patentowy RP, 2021 (in Polish).
  50. E. Hołota, B. Kowalska, D. Kowalski, Localization method for water quality monitoring points using chlorine concentration measurements in real water network, Desal. Water Treat., 199 (2020) 227–233.
  51. N.B. Hallam, J.R. West, C.F. Forster, J.C. Powell, I. Spencer, The decay of chlorine associated with the pipe wall in water distribution systems, Water Res., 36 (2002) 3479–3488.