References

  1. A. Szymonik, J. Lach, K. Malińska, Fate and removal of pharmaceutical and illegal drugs present in drinking water and wastewater, Ecol. Chem. Eng. S, 24 (2017) 65–85.
  2. G. Singh, G. Triadafilopoulos, Epidemiology of NSAID induced gastrointestinal complications, J. Rheumatol. Suppl., 56 (1999) 18–24.
  3. A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments, Anal. Bioanal. Chem., 387 (2007) 1225–1234.
  4. S. Chopra, D. Kumar, Ibuprofen as an emerging organic contaminant in environment, distribution and remediation, Heliyon, 6 (2020) e04087, doi: 10.1016/j.heliyon.2020.e04087.
  5. S.C. Kollarahithlu, R.M. Balakrishnan, Adsorption of pharmaceuticals pollutants, ibuprofen, acetaminophen, and streptomycin from the aqueous phase using amine functionalized superparamagnetic silica nanocomposite, J. Cleaner Prod., 294 (2021) 126155, doi: 10.1016/j.jclepro.2021.126155.
  6. D.Z. Husein, R. Hassanien, M.F. Al-Hakkani, Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater sample, Heliyon, 5 (2019) e02339, doi: 10.1016/j.heliyon.2019.e02339.
  7. J.-S. Rhee, B.M. Kim, C.B. Jeong, H.G. Park, K.M.Y. Leung, Y.M. Lee, J.S. Lee, Effect of pharmaceuticals exposure on acetylcholinesterase (AChE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus, Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 158 (2013) 216–224.
  8. J. Li, Q. Ye, J. Gan, Degradation and transformation products of acetaminophen in soil, Water Res., 49 (2014) 44–52.
  9. L. Zhang, J. Hu, R. Zhu, Q. Zhou, J. Chen, Degradation of paracetamol by pure bacterial cultures and their microbial consortium, Appl. Microbiol. Biotechnol., 97 (2013) 3687–3698.
  10. R. Biela, D. Šíblová, E. Kabelíková, T. Švestková, Laboratory elimination of ibuprofen from water by selected adsorbents, Desal. Water Treat., 193 (2020) 424–431.
  11. J. Żur, A. Piński, A. Marchlewicz, K. Hupert-Kocurek, D. Wojcieszyńska, U. Guzik, Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria, Environ. Sci. Pollut. Res., 25 (2018) 21498–21524.
  12. M. Ashfaq, K.N. Khan, M. Saif-Ur-Rehman, G. Mustafa, M.F. Nazar, Q. Sun, J. Iqbal, S.J. Mulla, C.-P. Yu, Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan, Ecotoxicol. Environ. Saf., 136 (2017) 31–39.
  13. A. Tauxe-Wuersch, L.F. De Alencastro, D. Grandjean, J. Tarradellas, Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment, Water Resour., 39 (2005) 1761–1772.
  14. V.G. Samaras, A.S. Stasinakis, D. Mamais, N.S. Thomaidis, T.D. Lekkas, Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion, J. Hazard. Mater., 244–245 (2013) 259–267.
  15. A.M. Pereira, L.J. Silva, L.M. Meisel, C.M. Lino, A. Pena, Environmental impact of pharmaceuticals from Portuguese wastewaters: geographical and seasonal occurrence, removal and risk assessment, Environ. Res., 136 (2015) 108–119.
  16. S. Hena, H. Znad, Chapter Six – Membrane bioreactor for pharmaceuticals and personal care products removal from wastewater, Compr. Anal. Chem., 81 (2018) 201–256.
  17. K. Tang, G.T.H. Ooi, K. Litty, K. Sundmark, K.M.S. Kaarsholm, C. Sund, M. Christenson, K. Bester, H.R. Andersen, Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding, Bioresour. Technol., 236 (2017) 77–86.
  18. A. Binelli, S. Magni, C. Soave, F. Marazzi, E. Zuccato, S. Castiglioni, M. Parolini, V. Mezzanotte, The biofiltration process by the bivalve D. polymorpha for the removal of some pharmaceuticals and drugs of abuse from civil wastewaters, Ecol. Eng., 71 (2014) 710–721.
  19. A.M. Gholizadeh, M. Zarei, M. Ebratkhahan, A. Hasanzadeh, F. Vafaei, Removal of Phenazopyridine from wastewater by merging biological and electrochemical methods via Azolla filiculoides and electro-Fenton process, J. Environ. Manage., 254 (2020) 109802, doi: 10.1016/j.jenvman.2019.109802.
  20. Y.-J. Liu, S.-L. Lo, Y.-H. Liou, C.-Y. Hu, Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation–flotation with a cationic surfactant, Sep. Purif. Technol., 152 (2015) 148–154.
  21. S. Li, X. Zhang, Y. Huang, Zeolitic imidazolate frameworkderived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water, J. Hazard. Mater., 321 (2017) 711–719.
  22. A.H. Khan, N.A. Khan, M. Zubair, M.A. Shaida, M.S. Manzar, A. Abutaleb, M. Naushad, J. Iqbal, Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: a critical review, Environ. Res., 204 (2022) 112243, doi: 10.1016/j.envres.2021.112243.
  23. S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin, Catal. Today, 186 (2012) 29–34.
  24. G. Kamińska, J. Bohdziewicz, Potential of various materials for adsorption of micropollutants from wastewater, Environ. Prot. Eng., 42 (2016) 161–178.
  25. M.J. Ahmed, Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review, J. Environ. Manage., 190 (2017) 274–282.
  26. Y. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, Chem. Eng. J., 225 (2013) 679–685.
  27. K. Delhiraja, K. Vellingiri, D.W. Boukhvalov, L. Philip, Development of highly water stable graphene
    oxide-based composites for the removal of pharmaceuticals and personal care products, Ind. Eng. Chem. Res., 58 (2019) 2899–2913.
  28. Y. Wang, J. Ma, J. Zhu, N. Ye, X. Zhang, H. Huang, Multiwalled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products, Water Res., 92 (2016) 104–112.
  29. I. Lung, M.-L. Soran, A. Stegarescu, O. Opris, S. Gutoiu, C. Leostean, M.D. Lazar, I. Kacso, T.-D. Silipas, A.S. Porav, Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions, J. Hazard. Mater., 403 (2021) 123528, doi: 10.1016/j.jhazmat.2020.123528.
  30. H.-H. Cho, H. Huang, K. Schwab, Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes, Langmuir, 27 (2011) 12960–12967.
  31. L. Yanyan, T.A Kurniawan, A.B. Albadarin, G. Walker, Enhanced removal of acetaminophen from synthetic wastewater using multi-walled carbon nanotubes (MWCNTs) chemically modified with NaOH, HNO3/H2SO4, ozone, and/or chitosan, J. Mol. Liq., 251 (2018) 369–377.
  32. Y. Wang, X. Wei, R. Zhang, Y. Wu, M.U. Farid, H. Huang, Comparison of chemical, ultrasonic and thermal regeneration of carbon nanotubes for acetaminophen, ibuprofen, and triclosan adsorption, RSC Adv., 7 (2017) 52719–52728.
  33. A.R. Bakr, M.S. Rahaman, Electrochemical efficacy of a carboxylated multi-walled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions, Chemosphere, 153 (2016) 508–520.
  34. O. Duman, S. Tunç, T.G. Polat, B.K. Bozoğlan, Synthesis of magnetic oxidized multi-walled carbon
    nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption, Carbohydr. Polym., 147 (2016) 79–88.
  35. O. Duman, C. Özcan, T.G. Polat, S. Tunç, Carbon nanotubebased magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and
    OMWCNT-κ-carrageenan-Fe3O4 nanocomposites, Environ. Pollut., 244 (2019) 723–732.
  36. O. Duman, S. Tunç, B.K. Bozoğlan, T.G. Polat, Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-k-carrageenan-Fe3O4 nanocomposite, J. Alloys Compd., 687 (2016) 370–383.
  37. K. Kan, T. Xia, Y. Yang, H. Bi, H. Fu, K. Shi, Functionalization of multi-walled carbon nanotube for electrocatalytic oxidation of nitric oxide, J. Appl. Electrochem., 40 (2010) 593–599.
  38. K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng., 74 (2017) 25–48.
  39. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
  40. F. Pirvu, C.I. Covaliu-Mierla, I. Paun, G. Paraschiv, V. Iancu, Treatment of wastewater containing nonsteroidal antiinflammatory drugs using activated carbon material, Materials, 15 (2022) 559, doi: 10.3390/ma15020559.
  41. H. Nourmoradi, K.F. Moghadam, A. Jafari, B. Kamarehie, Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus Brantii (Oak) acorn as a low-cost biosorbent, J. Environ. Chem. Eng., 6 (2018) 6807–6815.
  42. S. Żółtowska-Aksamitowska, P. Bartczak, J. Zembrzuska, T. Jesionowski, Removal of hazardous non-steroidal antiinflammatory drugs from aqueous solutions by biosorbent based on chitin and lignin, Sci. Total Environ., 612 (2018) 1223–1233.
  43. A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry, Chemosphere, 262 (2021) 128322, doi: 10.1016/j.chemosphere.2020.128322.
  44. P. Iovino, S. Canzano, S. Capasso, A. Erto, D. Musmarra, A modeling analysis for the assessment of ibuprofen adsorption mechanism onto activated carbons, Chem. Eng. J., 277 (2015) 360–367.
  45. S. Zhang, T. Shao, S.S.K. Bekaroglu, T. Karanfil, Adsorption of synthetic organic chemicals by carbon nanotubes: effects of background solution chemistry, Water Res., 44 (2010) 2067–2074.
  46. K. Kuśmierek, A. Świątkowski, The influence of an electrolyte on the adsorption of 4-chlorophenol onto activated carbon and multi-walled carbon nanotubes, Desal. Water Treat., 56 (2015) 2807–2816.