References
- B. Senthil Rathi, P. Senthil Kumar, D.-V.N. Vo, Critical review
on hazardous pollutants in water environment: occurrence,
monitoring, fate, removal technologies and risk assessment,
Sci. Total Environ., 797 (2021) 149134, doi: 10.1016/j.scitotenv.2021.149134.
- A. Inyinbor Adejumoke, O. Adebesin Babatunde, P. Oluyori
Abimbola, A. Adelani-Akande Tabitha, O. Dada Adewumi,
A. Oreofe Toyin, Water Pollution: Effects, Prevention, and
Climatic Impact, M. Glavan, Ed., Water Challenges of an
Urbanizing World, InTechOpen, 2018, 72018, doi: 10.5772/intechopen.72018.
- N. Ivanova, V. Gugleva, M. Dobreva, I. Pehlivanov, S. Stefanov,
V. Andonova, Silver Nanoparticles as Multi-Functional
Drug Delivery Systems, M.A. Farrukh, Ed., Nanomedicines,
InTechOpen, 2016, doi: 10.5772/intechopen.80238.
- S.Y. Wee, N.A.H. Ismail, D.E.M. Haron, F.M. Yusoff,
S.M. Praveena, A.Z. Aris, Pharmaceuticals, hormones,
plasticizers, and pesticides in drinking water, J. Hazard. Mater.,
424 (2022) 127327, doi: 10.1016/j.jhazmat.2021.127327.
- A. Pereira, L. Silva, C. Laranjeiro, A. Pena, Assessment of
human pharmaceuticals in drinking water catchments, tap
and drinking fountain waters, Appl. Sci., 11 (2021) 7062,
doi: 10.3390/app11157062.
- C. Liu, L. Tan, L. Zhang, W. Tian, L. Ma, A review of the
distribution of antibiotics in water in different regions of China
and current antibiotic degradation pathways, Front. Environ.
Sci., 9 (2021) 692298, doi: 10.3389/fenvs.2021.692298.
- C. Manyi-Loh, S. Mamphweli, E. Meyer, A. Okoh, Antibiotic use
in agriculture and its consequential resistance in environmental
sources: potential public health implications, Molecules,
23 (2018) 795, doi: 10.3390/molecules23040795.
- P. Krasucka, B. Pan, O. Yong Sik, D. Mohan, B. Sarkar,
P. Oleszczuk, Engineered biochar – a sustainable solution for
the removal of antibiotics from water, Chem. Eng. J., 405 (2021)
126926, doi: 10.1016/j.cej.2020.126926.
- B. Halling-Sørensen, G. Sengeløv, J. Tjørnelund, Toxicity
of tetracyclines and tetracycline degradation products
to environmentally relevant bacteria, including selected
tetracycline-resistant bacteria, Arch. Environ. Contam. Toxicol.,
42 (2002) 263–271.
- J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation
of tetracycline antibiotics: mechanisms and kinetic studies
for advanced oxidation/reduction processes, Chemosphere,
78 (2010) 533–540.
- H. Huang, J. Tang, K. Gao, R. He, H. Zhao, D. Werner,
Characterization of KOH modified biochars from different
pyrolysis temperatures and enhanced adsorption of antibiotics,
RSC Adv., 7 (2017) 14640–14648.
- S.D. Richardson, C.S. Willson, K.A. Rusch, Use of Rhodamine
water tracer in the marshland upwelling system, Ground Water,
42 (2004) 678–688.
- Y. Huang, D. Wang, W. Liu, L. Zheng, Y. Wang, X. Liu, M. Fan,
Z. Gong, Rapid screening of rhodamine B in food by hydrogel
solid-phase extraction coupled with direct fluorescence
detection, Food Chem., 316 (2020) 126378, doi: 10.1016/j.foodchem.2020.126378.
- L.F. Pinto, A.M. Montaño, C.P. González, G.C. Barón, Removal
of rhodamine B in wastewater from the textile industry using
geopolymeric material, J. Phys.: Conf. Ser., 1386 (2019) 012040,
doi: 10.1088/1742-6596/1386/1/012040.
- M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, Determination of
rhodamine B in soft drink, waste water and lipstick samples after
solid phase extraction, Food Chem. Toxicol., 48 (2011) 1796–1799.
- R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the
hazardous dye rhodamine B through photocatalytic and
adsorption treatments, J. Environ. Manage., 85 (2007) 956–964.
- National Toxicology Program, NTP Toxicology and
Carcinogenesis Studies of Rhodamine 6G (C.I. Basic Red 1)
(CAS No. 989-38-8) in F344/N Rats and B6C3F1 Mice (Feed
Studies), Natl. Toxicol. Program Tech. Rep. Ser., 1989, pp. 1–192.
- J. Hoslett, T.M. Massara, S. Malamis, D. Ahmad, I. van den
Boogaert, E. Katsou, B. Ahmad, A. Ghazal, S. Simons, L. Wrobel,
H. Jouhara, Surface water filtration using granular media and
membranes: a review, Sci. Total Environ., 639 (2018) 1268–1282.
- V. Kumar, K.K. Jaiswal, M. Verma, M.S. Vlaskin, M. Nanda,
P.K. Chauhan, A. Singh, H. Kim, Algae-based sustainable
approach for simultaneous removal of micropollutants,
and bacteria from urban wastewater and its real-time reuse
for aquaculture, Sci. Total Environ., 774 (2021) 145556,
doi: 10.1016/j.scitotenv.2021.145556.
- M. Nagamine, M. Osial, K. Jackowska, P. Krysinski, J. Widera-Kalinowska, Tetracycline photocatalytic degradation under
CdS treatment, J. Mar. Sci. Eng., 8 (2020) 483, doi: 10.3390/jmse8070483.
- A.K. Reddy, V.L. Reddy, E. Kwon, K.H. Kim, T. Akter, S.
Kalagara, Recent advances in photocatalytic treatment of
pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
- S.J. Olusegun, G. Larrea, M. Osial, K. Jackowska, P. Krysinski,
Photocatalytic degradation of antibiotics by superparamagnetic
iron oxide nanoparticles. Tetracycline case, Catalysts, 11 (2021)
1243, doi: 10.3390/catal11101243.
- V. Weber, I. Kamika, M.N.B. Momba, Comparing the effect of
zinc oxide and titanium dioxide nanoparticles on the ability of
moderately halophilic bacteria to treat wastewater, Sci. Rep.,
11 (2021) 16969, doi: 10.1038/s41598-021-96413-5.
- P. Pietrzyk, N.T. Phuong, S.J. Olusegun, N. Hong Nam,
D.T.M. Thanh, M. Giersig, P. Krysiński, M. Osial, Titan yellow
and Congo red removal with superparamagnetic iron-oxidebased
nanoparticles doped with zinc, Magnetochemistry,
8 (2022) 91, doi: 10.3390/magnetochemistry8080091.
- M. Abd Elkodous, G.S. El-Sayyad, S.M. Youssry, H.G. Nada,
M. Gobara, M.A. Elsayed, A.M. El-Khawaga, G. Kawamura,
W.K. Tan, A.I. El-Batal, A. Matsuda, Carbon-dot-loaded
CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced
photocatalytic and antimicrobial potential: an engineered
nanocomposite for wastewater treatment, Sci. Rep., 10 (2020)
11534, doi: 10.1038/s41598-020-68173-1.
- S.J. Olusegun, N.D.S. Mohallem, Comparative adsorption
mechanism of doxycycline and Congo red using synthesized
kaolinite supported CoFe2O4 nanoparticles, Environ. Pollut.,
260 (2020) 114019, doi: 10.1016/j.envpol.2020.114019.
- D.L. Thi, T.P.T. Le, H.T. Do, H.T. Vo, N.T. Pham, T.T. Nguyen,
H.T. Cao, P.T. Nguyen, T.M.T. Dinh, H.V. Le, D.L. Tran,
Fabrication of porous hydroxyapatite granules as an effective
adsorbent for the removal of aqueous Pb(II) ions, J. Chem.,
2019 (2019) 8620181, doi: 10.1155/2019/8620181.
- L. Lu, J.S. Guest, C.A. Peters, X. Zhu, G.H. Rau, Z.J. Ren,
Wastewater treatment for carbon capture and utilization,
Nat. Sustain., 1 (2018) 750–758.
- N. Hossain, S. Nizamuddin, G. Griffin, P. Selvakannan,
N.M. Mubarak, T.M.I. Mahlia, Synthesis and characterization
of rice husk biochar via hydrothermal carbonization for
wastewater treatment and biofuel production, Sci. Rep.,
10 (2020) 18851, doi: 10.1038/s41598-020-75936-3.
- J. Sun, X. Liu, F. Zhang, J. Zhou, J. Wu, A. Alsaedi, H. Tasawar,
J. Li, Insight into the mechanism of adsorption of phenol
and resorcinol on activated carbons with different oxidation
degrees, Colloids Surf., A, 563 (2019) 22–30.
- W. Xiang, Y. Wan, X. Zhang, Z. Tan, T. Xia, Y. Zheng, B. Gao,
Adsorption of tetracycline hydrochloride onto ball-milled
biochar: governing factors and mechanisms, Chemosphere,
255 (2020) 127057, doi: 10.1016/j.chemosphere.2020.127057.
- Y.X. Seow, Y.H. Tan, N.M. Mubarak, J. Kansedo, M. Khalid,
M.L. Ibrahim, M. Ghasemi, A review on biochar production
from different biomass wastes by recent carbonization
technologies and its sustainable applications, J. Environ. Chem.
Eng., 10 (2022) 107017, doi: 10.1016/j.jece.2021.107017.
- Y. Zhang, S. Fan, T. Liu, W. Fu, B. Li, A review of biochar
prepared by microwave-assisted pyrolysis of organic wastes,
Sustainable Energy Technol. Assess., 50 (2022) 101873,
doi: 10.1016/j.seta.2021.101873.
- Q. Zhang, D. Zhang, W. Lu, M.U. Khan, H. Xu, W. Yi, H. Lei,
E. Huo, M. Qian, Y. Zhao, R. Zou, Production of high-density
polyethylene biocomposites from rice husk biochar: effects of
varying pyrolysis temperature, Sci. Total Environ., 738 (2020)
139910, doi: 10.1016/j.scitotenv.2020.139910.
- Q. Shen, Z. Wang, Q. Yu, Y. Cheng, Z. Liu, T. Zhang, S. Zhou,
Removal of tetracycline from an aqueous solution using
manganese dioxide modified biochar derived from Chinese
herbal medicine residues, Environ. Res., 183 (2020) 109195,
doi: 10.1016/j.envres.2020.109195.
- F. Saremi, M.R. Miroliaei, M. Shahabi Nejad, H. Sheibani,
Adsorption of tetracycline antibiotic from aqueous solutions
onto vitamin B6-upgraded biochar derived from date
palm leaves, J. Mol. Liq., 318 (2020) 114126, doi: 10.1016/j.molliq.2020.114126.
- H.M. Jang, S. Yoo, Y.K. Choi, S. Park, E. Kan, Adsorption
isotherm, kinetic modeling and mechanism of tetracycline
on Pinus taeda derived activated biochar, Bioresour. Technol.,
259 (2018) 24–31.
- V.T. Nguyen, T.B. Nguyen, C.W. Chen, C.M. Hung, T.D.H. Vo,
J.H.C. Chang, D. Dong, Influence of pyrolysis temperature on
polycyclic aromatic hydrocarbons production and tetracycline
adsorption behavior of biochar derived from spent coffee
ground, Bioresour. Technol., 284 (2019) 197–203.
- P. Zhang, Y. Li, Y. Cao, L. Han, Characteristics of tetracycline
adsorption by cow manure biochar prepared at different
pyrolysis temperatures, Bioresour. Technol., 285 (2019) 121348,
doi: 10.1016/j.biortech.2019.121348.
- J. Zhao, F. Gao, Y. Sun, W. Fang, X. Li, Y. Dai, New use for
biochar derived from bovine manure for tetracycline removal,
J. Environ. Chem. Eng., 9 (2021) 105585, doi: 10.1016/j.jece.2021.105585.
- D. Zhang, Q. He, X. Hu, K. Zhang, C. Chen, Y. Xue, Enhanced
adsorption for the removal of tetracycline hydrochloride (TC)
using ball-milled biochar derived from crayfish shell, Colloids
Surf., A, 615 (2021) 126254, doi: 10.1016/j.colsurfa.2021.126254.
- K. Wystalska, K. Malińska, M. Barczak, Poultry manure derived
biochars – the impact of pyrolysis temperature on selected
properties and potentials for further modifications, J. Sustain.
Dev. Energy Water Environ. Syst., 9 (2021) 1080337.
- J. Sobik-Szołtysek, K. Wystalska, K. Malińska, E. Meers,
Influence of pyrolysis temperature on the heavy metal sorption
capacity of biochar from poultry manure, Materials, 14 (2021)
6566, doi: 10.3390/ma14216566.
- B. Song, X. Cao, W. Gao, S. Aziz, S. Gao, C.H. Lam, R. Lin, Preparation
of nano-biochar from conventional biorefineries for
high-value applications, Renewable Sustainable Energy Rev.,
157 (2022) 112057, doi: 10.1016/j.rser.2021.112057.
- K. Ghassemi-Golezani, S. Farhangi-Abriz, Improving plant
available water holding capacity of soil by solid and chemically
modified biochars, Rhizosphere, 21 (2021) 100469, doi: 10.1016/j.rhisph.2021.100469.
- X. Yang, L. Wang, J. Guo, H. Wang, O. Mašek, H. Wang,
N.S. Bolan, D.S. Alessi, D. Hou, Aging features of metal(loid)
s in biochar-amended soil: effects of biochar type and aging
method, Sci. Total Environ., 815 (2022) 152922, doi: 10.1016/j.scitotenv.2022.152922.
- Y. Liu, J. Chen, Effect of ageing on biochar properties and
pollutant management, Chemosphere, 292 (2022) 133427,
doi: 10.1016/j.chemosphere.2021.133427.
- D.C.C. da S. Medeiros, C. Nzediegwu, C. Benally, S.A. Messele,
J.H. Kwak, M.A. Naeth, Y.S. Ok, S.X. Chang, M. Gamal El-Din,
Pristine and engineered biochar for the removal of contaminants
co-existing in several types of industrial wastewaters: a critical
review, Sci. Total Environ., 809 (2021) 151120, doi: 10.1016/j.scitotenv.2021.151120.
- A. Dutta, F. Defersha, Biocharbon, biomethane and biofertilizer
from cord residue: a hybrid thermos-chemical and biochemical
approach, Energy, 165 (2018) 370–384.
- D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen,
X. Zhang, S. Varjani, Y. Liu, Feasibility study on a new pomelo
peel derived biochar for tetracycline antibiotics removal in
swine wastewater, Sci. Total Environ., 720 (2020) 137662,
doi: 10.1016/j.scitotenv.2020.137662.
- J. Dai, X. Meng, Y. Zhang, Y. Huang, Effects of modification and
magnetization of rice straw derived biochar on adsorption of
tetracycline from water, Bioresour. Technol., 311 (2020) 123455,
doi: 10.1016/j.biortech.2020.123455.
- J. Eun Kim, S. Kant Bhatia, H. Jin Song, E. Yoo, H. Jin Jeon,
J.Y. Yoon, Y. Yang, R. Gurav, Y.H. Yang, H.J. Kim, Y.K. Choi,
Adsorptive removal of tetracycline from aqueous solution by
maple leaf-derived biochar, Bioresour. Technol., 306 (2020)
123092, doi: 10.1016/j.biortech.2020.123092.
- Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei,
L. Luo, M. Lei, L. Tang, Modification of biochar derived from
sawdust and its application in removal of tetracycline and
copper from aqueous solution: adsorption mechanism and
modelling, Bioresour. Technol., 245 (2017) 266–273.
- B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, H. Chu, Biochar as a
low-cost adsorbent for aqueous heavy metal removal: a review,
J. Anal. Appl. Pyrolysis, 155 (2021) 105081, doi: 10.1016/j.jaap.2021.105081.
- H.Q. Li, J.T. Hu, Y. Meng, J.H. Su, X.J. Wang, An investigation
into the rapid removal of tetracycline using multilayered
graphene-phase biochar derived from waste chicken feather,
Sci. Total Environ., 603 (2017) 39–48.
- C. Li, S. Xie, Y. Wang, R. Jiang, X. Wang, N. Lv, X. Pan, G. Cai,
G. Yu, Y. Wang, Multi-functional biochar preparation and
heavy metal immobilization by co-pyrolysis of livestock feces
and biomass waste, Waste Manage., 134 (2021) 241–250.
- S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi,
Control of sp2/sp3 carbon ratio and surface chemistry of
nanodiamond powders by selective oxidation in air, J. Am.
Chem. Soc., 128 (2006) 11635–11642.
- M. Koinuma, H. Tateishi, K. Hatakeyama, S. Miyamoto,
C. Ogata, A. Funatsu, T. Taniguchi, Y. Matsumoto, Analysis of
reduced graphene oxides by X-ray photoelectron spectroscopy
and electrochemical capacitance, Chem. Lett., 42 (2013)
924–926.
- M.K. Rabchinskii, S.A. Ryzhkov, D.A. Kirilenko, N.V. Ulin,
M.V. Baidakova, V.V. Shnitov, S.I. Pavlov, R.G. Chumakov,
D.Y. Stolyarova, B.N. Besedina, A.V. Shvidchenko,
D.V. Potorochin, F. Roth, D.A. Smirnov, M.V. Gudkov,
M. Brzhezinskaya, O.I. Lebedev, V.P. Melnikov, P.N. Brunkov,
From graphene oxide towards aminated graphene: facile
synthesis, its structure and electronic properties, Sci. Rep.,
10 (2020) 6902, doi: 10.1038/s41598-020-63935-3.
- G. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton,
Probing the thermal deoxygenation of graphene oxide using
high-resolution in situ X-ray-based spectroscopies, J. Phys.
Chem. C, 115 (2011) 17009–17019.
- J. Wei, G. Yuan, Y. Liu, D. Bi, L. Xiao, J. Lu, B.K.G. Theng,
H. Wang, L. Zhang, X. Zhang, Assessing the effect of pyrolysis
temperature on the molecular properties and copper sorption
capacity of a halophyte biochar, Environ. Pollut., 251 (2019)
56–65.
- A. Tomczyk, Z. Sokołowska, P. Boguta, Biochar physicochemical
properties: pyrolysis temperature and feedstock kind effects,
Rev. Environ. Sci. Biotechnol., 19 (2020) 191–215.
- J. Heeg, U. Schubert, F. Küchenmeister, Surface chemistry
of planarized silk-films studied by XPS, Microchim. Acta,
133 (2000) 113–117.
- Z. Tan, L. Liu, H.Q. Zhang, Mechanistic study of the influence
of pyrolysis conditions on potassium speciation in biochar
“preparation-application” process, Sci. Total Environ.,
599–600 (2017) 207–216.
- M. Gao, Y. Zhang, X. Gong, Z. Song, Z. Guo, Removal
mechanism of di-n-butyl phthalate and oxytetracycline from
aqueous solutions by nano-manganese dioxide modified
biochar, Environ. Sci. Pollut. Res., 25 (2018) 7796–7807.
- Y.J. Oh, J.J. Yoo, Y.I. Kim, J.K. Yoon, H.N. Yoon, J.H. Kim,
S.B. Park, Oxygen functional groups and electrochemical
capacitive behavior of incompletely reduced graphene oxides
as a thin-film electrode of supercapacitor, Electrochim. Acta,
116 (2014) 118–128.
- L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz,
B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide
and reduced graphene oxide studied by the XRD, TEM and
electron spectroscopy methods, J. Electron. Spectrosc. Relat.
Phenom., 195 (2014) 145–154.
- M.K. Rabchinskii, A.T. Dideikin, D.A. Kirilenko, M.V. Baidakova,
V.V. Shnitov, F. Roth, S.V. Konyakhin, N.A. Besadina,
S.I. Pavlov, R.A. Kuricyn, N.M. Lebedeva, P.N. Brunkov,
A.Y’. Vul, Facile reduction of graphene oxide suspensions and
films using glass wafers, Sci. Rep., 8 (2018) 14154, doi: 10.1038/s41598-018-32488-x.
- C. Reshma, H. Hareendrakrishnakumar, M. Raja, J.M. Gladis,
A.M. Stephan, Sulfur-immobilized nitrogen and oxygen co-doped hierarchically porous biomass carbon for lithium-sulfur
batteries: influence of sulfur content and distribution on its
performance, ChemistrySelect, 2 (2017) 10484–10495.
- M. Wagstaffe, A.G. Thomas, M.J. Jackman, M. Torres-Molina,
K.L. Syres, K. Handrup, An experimental investigation of
the adsorption of a phosphonic acid on the anatase TiO2(101)
surface, J. Phys. Chem. C, 120 (2016) 1693–1700.
- https://srdata.nist.gov/xps/
- K.N. Wood, S.T. Christensen, D. Nodlund, A.A. Dameron,
C. Ngo, H. Dinh, T. Gennett, R. O’Hayre, S. Pelypenko,
Spectroscopic investigation of nitrogen-functionalized carbon
materials, Surf. Interface Anal., 48 (2016) 283–292.
- M. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, L. Pilan,
Post-polymerization electrochemical functionalization of
a conducting polymer: diazonium salt electroreduction at
polypyrrole electrodes, J. Electrochem. Soc., 161 (2014) G103,
doi: 10.1149/2.0871412jes.
- C. Maddi, F. Bourquard, V. Barnier, J. Avila, M.-C. Asensio,
T. Tite, C. Donnet, F. Garrelie, Nano-architecture of nitrogendoped
graphene films synthesized from a solid CN source,
Sci. Rep., 8 (2018) 3247, doi: 10.1038/s41598-018-21639-9.
- K. Grodecki, Raman spectroscopy of graphene (Spektroskopia
ramanowska grafenu), Mater. Elektron., 41 (2013) 47–53
(in Polish).
- L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus,
Raman spectroscopy in graphene, Phys. Rep., 473 (2009) 51–87.
- Z. Tan, S. Yuan, M. Hong, L. Zhang, Q. Huang, Mechanism
of negative surface charge formation on biochar and its effect
on the fixation of soil Cd, J. Hazard. Mater., 384 (2020) 121370,
doi: 10.1016/j.jhazmat.2019.121370.
- J.H. Yuan, R.K. Xu, H. Zhang, The forms of alkalis in the
biochar produced from crop residues at different temperatures,
Bioresour. Technol. ,102 (2011) 3488–3497.
- W. Zuo, N. Li, B. Chen, C. Zhang, Q. Li, M. Yan, Investigation of
the deprotonation of tetracycline using differential absorbance
spectra: a comparative experimental and DFT/TD-DFT
study, Sci. Total Environ., 726 (2020) 138432, doi: 10.1016/j.scitotenv.2020.138432.
- S. Rajoriya, S. Bargole, V.K. Saharan, Degradation of a cationic
dye (Rhodamine 6G) using hydrodynamic cavitation coupled
with other oxidative agents: Reaction mechanism and pathway,
Ultrason. Sonochem., 34 (2017) 183–194.
- S.J. Olusegun, E.T.F. Freitas, L.R.S. Lara, H.O. Stumpf,
N.D.S. Mohallem, Effect of drying process and calcination
on the structural and magnetic properties of cobalt ferrite,
Ceram. Int., 45 (2019) 8734–8743.
- H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.P. Chao,
Mistakes and inconsistencies regarding adsorption of
contaminants from aqueous solutions: a critical review, Water
Res., 120 (2017) 88–116.
- M.A. Al-Ghouti, R.S. Al-Absi, Mechanistic understanding of the
adsorption and thermodynamic aspects of cationic methylene
blue dye onto cellulosic olive stones biomass from wastewater,
Sci. Rep., 10 (2020) 15928, doi: 10.1038/s41598-020-72996-3.
- M.K. Goftar, K. Moradi, N.M. Kor, N. Moradi, Spectroscopic
studies on aggregation phenomena of dyes, Eur. J. Exp. Biol.,
4 (2014) 72–81.
- J. Rainer, V. Mrlik, R. Doris, H. Jakub, P. Sedlacek, B. Lucie,
G. Soja, Biochar surface functional groups as affected by biomass
feedstock, biochar composition and pyrolysis temperature,
Carbon Resour. Convers., 4 (2021) 36–46.
- Y. Cuixia, X. Yingming, W. Lin, L. Xuefeng, S. Yuebing, Effect
of different pyrolysis temperatures on physico-chemical
characteristics and lead(II) removal of biochar derived from
chicken manure, RSC Adv., 10 (2020) 3667–3674.
- L. Liu, G. Liu, J. Zhou, J. Wang, A. Wang, Improved bioreduction
of nitrobenzene by black carbon/biochar derived from crop
residues, RSC Adv., 6 (2016) 84388–84396.
- H.N. Tran, S.J. You, T.V. Nguyen, H.P. Chao, Insight into the
adsorption mechanism of cationic dye onto biosorbents derived
from agricultural wastes, Chem. Eng. Commun., 204 (2017)
1020–1036.
- V. Soares, M.C. Grando, G.L. Colpani, L.L. Silva, J. Maria,
M.D.M. Mello, Obtaining of Fe3O4@C core-shell nanoparticles
as an adsorbent of tetracycline in aqueous solutions, Mater.
Res., 22 (2019) 1–11.
- J. Zang, T. Wu, H. Song, N. Zhou, S. Fan, Z. Xie, J. Tang, Removal
of tetracycline by hydrous ferric oxide: adsorption kinetics,
isotherms, and mechanism, Int. J. Environ. Res. Public Health,
16 (2019) 4580, doi: 10.3390/ijerph16224580.
- H. Wang, C. Fang, Q. Wang, Y. Chu, Y. Song, Y. Chen, X. Xue,
Sorption of tetracycline on biochar derived from rice straw
and swine manure, RSC Adv., 8 (2018) 16260–16268.
- X. Zhang, Y. Li, M. Wu, Y. Pang, Z. Hao, M. Hu, R. Qiu,
Enhanced adsorption of tetracycline by an iron and manganese
oxides loaded biochar: kinetics, mechanism and column
adsorption, Bioresour. Technol., 320 (2021) 124264, doi: 10.1016/j.biortech.2020.124264.
- X. Zhang, X. Lin, Y. He, Y. Chen, X. Luo, R. Shang, Study
on adsorption of tetracycline by Cu-immobilized alginate
adsorbent from water environment, Int. J. Biol. Macromol.,
124 (2019) 418–428.
- X. Zhu, Y. Liu, F. Qian, C. Zhou, S. Zhang, J. Chen, Bioresource
technology preparation of magnetic porous carbon from waste
hydrochar by simultaneous activation and magnetization for
tetracycline removal, Bioresour. Technol., 154 (2014) 209–214.
- H. Wang, Y. Chu, C. Fang, F. Huang, Y. Song, X. Xue, Sorption of
tetracycline on biochar derived from rice straw under different
temperatures, PLoS One, 12 (2017) e0182776, doi: 10.1371/journal.pone.0182776.
- P. Liao, Z. Zhan, J. Dai, X. Wu, W. Zhang, K. Wang, S. Yuan,
Adsorption of tetracycline and chloramphenicol in aqueous
solutions by bamboo charcoal: a batch and fixed-bed column
study, Chem. Eng. J., 228 (2013) 496–505.
- L. Yang, J. Hu, L. He, J. Tang, Y. Zhou, J. Li, K. Ding, One-pot
synthesis of multifunctional magnetic N-doped graphene
composite for SERS detection, adsorption separation and
photocatalytic degradation of Rhodamine 6G, Chem. Eng. J.,
327 (2017) 694–704.
- H. Ren, D.D. Kulkarni, K. Rajesh, W. Xu, I. Choi, Competitive
adsorption of dopamine and Rhodamine 6G on the surface
of graphene oxide, ACS Appl. Mater. Interfaces, 6 (2014)
2459−2470.
- G. Annadurai, R. Juang, D. Lee, Adsorption of rhodamine 6G
from aqueous solutions on activated carbon, J. Environ. Sci.
Health., Part A, 4529 (2007) 715–725.
- H.B. Senturk, D. Ozdes, C. Duran, Biosorption of Rhodamine
6G from aqueous solutions onto almond shell (Prunus dulcis)
as a low cost biosorbent, Desalination, 252 (2010) 81–87.
- E.P. Santos, R.F. Silva, J.F. Silva, T. Suwunwong, P. Patho,
P. Choto, K. Phoungthong, Enhancement the rhodamine
6G adsorption property on Fe3O4-composited biochar
derived from rice husk, Mater. Res. Express, 7 (2020) 025511,
doi: 10.1088/2053-1591/ab6b58.
- A. Alizadeh, A. Parizanganeh, A. Zamani, Application of
cellulosic biomass for removal of cationic dye Rhodamine 6G
from aqueous solutions, Int. J. Waste Resour., 6 (2016) 100256,
doi: 10.4172/2252-5211.1000256.
- S.S. Gupta, T.S. Sreeprasad, S.M. Maliyekkal, S.K. Das,
T. Pradeep, Graphene from sugar and its application in water
purification, ACS Appl. Mater. Interfaces, 4 (2012) 4156−4163.