References
  -  B. Senthil Rathi, P. Senthil Kumar, D.-V.N. Vo, Critical review
    on hazardous pollutants in water environment: occurrence,
    monitoring, fate, removal technologies and risk assessment,
    Sci. Total Environ., 797 (2021) 149134, doi: 10.1016/j.scitotenv.2021.149134. 
-  A. Inyinbor Adejumoke, O. Adebesin Babatunde, P. Oluyori
    Abimbola, A. Adelani-Akande Tabitha, O. Dada Adewumi,
    A. Oreofe Toyin, Water Pollution: Effects, Prevention, and
    Climatic Impact, M. Glavan, Ed., Water Challenges of an
    Urbanizing World, InTechOpen, 2018, 72018, doi: 10.5772/intechopen.72018. 
-  N. Ivanova, V. Gugleva, M. Dobreva, I. Pehlivanov, S. Stefanov,
    V. Andonova, Silver Nanoparticles as Multi-Functional
    Drug Delivery Systems, M.A. Farrukh, Ed., Nanomedicines,
  InTechOpen, 2016, doi: 10.5772/intechopen.80238. 
-  S.Y. Wee, N.A.H. Ismail, D.E.M. Haron, F.M. Yusoff,
    S.M. Praveena, A.Z. Aris, Pharmaceuticals, hormones,
    plasticizers, and pesticides in drinking water, J. Hazard. Mater.,
  424 (2022) 127327, doi: 10.1016/j.jhazmat.2021.127327. 
-  A. Pereira, L. Silva, C. Laranjeiro, A. Pena, Assessment of
    human pharmaceuticals in drinking water catchments, tap
    and drinking fountain waters, Appl. Sci., 11 (2021) 7062,
    doi: 10.3390/app11157062. 
-  C. Liu, L. Tan, L. Zhang, W. Tian, L. Ma, A review of the
    distribution of antibiotics in water in different regions of China
    and current antibiotic degradation pathways, Front. Environ.
  Sci., 9 (2021) 692298, doi: 10.3389/fenvs.2021.692298. 
-  C. Manyi-Loh, S. Mamphweli, E. Meyer, A. Okoh, Antibiotic use
    in agriculture and its consequential resistance in environmental
    sources: potential public health implications, Molecules,
  23 (2018) 795, doi: 10.3390/molecules23040795. 
-  P. Krasucka, B. Pan, O. Yong Sik, D. Mohan, B. Sarkar,
    P. Oleszczuk, Engineered biochar – a sustainable solution for
    the removal of antibiotics from water, Chem. Eng. J., 405 (2021)
    126926, doi: 10.1016/j.cej.2020.126926. 
-  B. Halling-Sørensen, G. Sengeløv, J. Tjørnelund, Toxicity
    of tetracyclines and tetracycline degradation products
    to environmentally relevant bacteria, including selected
    tetracycline-resistant bacteria, Arch. Environ. Contam. Toxicol.,
    42 (2002) 263–271. 
-  J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation
    of tetracycline antibiotics: mechanisms and kinetic studies
    for advanced oxidation/reduction processes, Chemosphere,
    78 (2010) 533–540. 
-  H. Huang, J. Tang, K. Gao, R. He, H. Zhao, D. Werner,
    Characterization of KOH modified biochars from different
    pyrolysis temperatures and enhanced adsorption of antibiotics,
    RSC Adv., 7 (2017) 14640–14648. 
-  S.D. Richardson, C.S. Willson, K.A. Rusch, Use of Rhodamine
    water tracer in the marshland upwelling system, Ground Water,
    42 (2004) 678–688. 
-  Y. Huang, D. Wang, W. Liu, L. Zheng, Y. Wang, X. Liu, M. Fan,
    Z. Gong, Rapid screening of rhodamine B in food by hydrogel
    solid-phase extraction coupled with direct fluorescence
    detection, Food Chem., 316 (2020) 126378, doi: 10.1016/j.foodchem.2020.126378. 
-  L.F. Pinto, A.M. Montaño, C.P. González, G.C. Barón, Removal
    of rhodamine B in wastewater from the textile industry using
    geopolymeric material, J. Phys.: Conf. Ser., 1386 (2019) 012040,
    
 doi: 10.1088/1742-6596/1386/1/012040.
-  M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, Determination of
    rhodamine B in soft drink, waste water and lipstick samples after
    solid phase extraction, Food Chem. Toxicol., 48 (2011) 1796–1799. 
-  R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the
    hazardous dye rhodamine B through photocatalytic and
    adsorption treatments, J. Environ. Manage., 85 (2007) 956–964. 
-  National Toxicology Program, NTP Toxicology and
    Carcinogenesis Studies of Rhodamine 6G (C.I. Basic Red 1)
    (CAS No. 989-38-8) in F344/N Rats and B6C3F1 Mice (Feed
    Studies), Natl. Toxicol. Program Tech. Rep. Ser., 1989, pp. 1–192. 
-  J. Hoslett, T.M. Massara, S. Malamis, D. Ahmad, I. van den
    Boogaert, E. Katsou, B. Ahmad, A. Ghazal, S. Simons, L. Wrobel,
    H. Jouhara, Surface water filtration using granular media and
  membranes: a review, Sci. Total Environ., 639 (2018) 1268–1282. 
-  V. Kumar, K.K. Jaiswal, M. Verma, M.S. Vlaskin, M. Nanda,
    P.K. Chauhan, A. Singh, H. Kim, Algae-based sustainable
    approach for simultaneous removal of micropollutants,
    and bacteria from urban wastewater and its real-time reuse
    for aquaculture, Sci. Total Environ., 774 (2021) 145556,
  doi: 10.1016/j.scitotenv.2021.145556. 
-  M. Nagamine, M. Osial, K. Jackowska, P. Krysinski, J. Widera-Kalinowska, Tetracycline photocatalytic degradation under
    CdS treatment, J. Mar. Sci. Eng., 8 (2020) 483, doi: 10.3390/jmse8070483. 
-  A.K. Reddy, V.L. Reddy, E. Kwon, K.H. Kim, T. Akter, S.
    Kalagara, Recent advances in photocatalytic treatment of
    pollutants in aqueous media, Environ. Int., 91 (2016) 94–103. 
-  S.J. Olusegun, G. Larrea, M. Osial, K. Jackowska, P. Krysinski,
    Photocatalytic degradation of antibiotics by superparamagnetic
    iron oxide nanoparticles. Tetracycline case, Catalysts, 11 (2021)
  1243, doi: 10.3390/catal11101243. 
-  V. Weber, I. Kamika, M.N.B. Momba, Comparing the effect of
    zinc oxide and titanium dioxide nanoparticles on the ability of
    moderately halophilic bacteria to treat wastewater, Sci. Rep.,
  11 (2021) 16969, doi: 10.1038/s41598-021-96413-5. 
-  P. Pietrzyk, N.T. Phuong, S.J. Olusegun, N. Hong Nam,
    D.T.M. Thanh, M. Giersig, P. Krysiński, M. Osial, Titan yellow
    and Congo red removal with superparamagnetic iron-oxidebased
    nanoparticles doped with zinc, Magnetochemistry,
    8 (2022) 91, doi: 10.3390/magnetochemistry8080091. 
-  M. Abd Elkodous, G.S. El-Sayyad, S.M. Youssry, H.G. Nada,
    M. Gobara, M.A. Elsayed, A.M. El-Khawaga, G. Kawamura,
    W.K. Tan, A.I. El-Batal, A. Matsuda, Carbon-dot-loaded
	  CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced
    photocatalytic and antimicrobial potential: an engineered
    nanocomposite for wastewater treatment, Sci. Rep., 10 (2020)
  11534, doi: 10.1038/s41598-020-68173-1. 
-  S.J. Olusegun, N.D.S. Mohallem, Comparative adsorption
    mechanism of doxycycline and Congo red using synthesized
    kaolinite supported CoFe2O4 nanoparticles, Environ. Pollut.,
  260 (2020) 114019, doi: 10.1016/j.envpol.2020.114019. 
-  D.L. Thi, T.P.T. Le, H.T. Do, H.T. Vo, N.T. Pham, T.T. Nguyen,
    H.T. Cao, P.T. Nguyen, T.M.T. Dinh, H.V. Le, D.L. Tran,
    Fabrication of porous hydroxyapatite granules as an effective
    adsorbent for the removal of aqueous Pb(II) ions, J. Chem.,
    2019 (2019) 8620181, doi: 10.1155/2019/8620181. 
-  L. Lu, J.S. Guest, C.A. Peters, X. Zhu, G.H. Rau, Z.J. Ren,
    Wastewater treatment for carbon capture and utilization,
    Nat. Sustain., 1 (2018) 750–758. 
-  N. Hossain, S. Nizamuddin, G. Griffin, P. Selvakannan,
    N.M. Mubarak, T.M.I. Mahlia, Synthesis and characterization
    of rice husk biochar via hydrothermal carbonization for
    wastewater treatment and biofuel production, Sci. Rep.,
    10 (2020) 18851, doi: 10.1038/s41598-020-75936-3. 
-  J. Sun, X. Liu, F. Zhang, J. Zhou, J. Wu, A. Alsaedi, H. Tasawar,
    J. Li, Insight into the mechanism of adsorption of phenol
    and resorcinol on activated carbons with different oxidation
    degrees, Colloids Surf., A, 563 (2019) 22–30. 
-  W. Xiang, Y. Wan, X. Zhang, Z. Tan, T. Xia, Y. Zheng, B. Gao,
    Adsorption of tetracycline hydrochloride onto ball-milled
    biochar: governing factors and mechanisms, Chemosphere,
  255 (2020) 127057, doi: 10.1016/j.chemosphere.2020.127057. 
-  Y.X. Seow, Y.H. Tan, N.M. Mubarak, J. Kansedo, M. Khalid,
    M.L. Ibrahim, M. Ghasemi, A review on biochar production
    from different biomass wastes by recent carbonization
    technologies and its sustainable applications, J. Environ. Chem.
    Eng., 10 (2022) 107017, doi: 10.1016/j.jece.2021.107017. 
-  Y. Zhang, S. Fan, T. Liu, W. Fu, B. Li, A review of biochar
    prepared by microwave-assisted pyrolysis of organic wastes,
    Sustainable Energy Technol. Assess., 50 (2022) 101873,
    doi: 10.1016/j.seta.2021.101873. 
-  Q. Zhang, D. Zhang, W. Lu, M.U. Khan, H. Xu, W. Yi, H. Lei,
    E. Huo, M. Qian, Y. Zhao, R. Zou, Production of high-density
    polyethylene biocomposites from rice husk biochar: effects of
    varying pyrolysis temperature, Sci. Total Environ., 738 (2020)
    139910, doi: 10.1016/j.scitotenv.2020.139910. 
-  Q. Shen, Z. Wang, Q. Yu, Y. Cheng, Z. Liu, T. Zhang, S. Zhou,
    Removal of tetracycline from an aqueous solution using
    manganese dioxide modified biochar derived from Chinese
    herbal medicine residues, Environ. Res., 183 (2020) 109195,
    doi: 10.1016/j.envres.2020.109195. 
-  F. Saremi, M.R. Miroliaei, M. Shahabi Nejad, H. Sheibani,
    Adsorption of tetracycline antibiotic from aqueous solutions
    onto vitamin B6-upgraded biochar derived from date
    palm leaves, J. Mol. Liq., 318 (2020) 114126, doi: 10.1016/j.molliq.2020.114126. 
-  H.M. Jang, S. Yoo, Y.K. Choi, S. Park, E. Kan, Adsorption
    isotherm, kinetic modeling and mechanism of tetracycline
    on Pinus taeda derived activated biochar, Bioresour. Technol.,
    259 (2018) 24–31. 
-  V.T. Nguyen, T.B. Nguyen, C.W. Chen, C.M. Hung, T.D.H. Vo,
    J.H.C. Chang, D. Dong, Influence of pyrolysis temperature on
    polycyclic aromatic hydrocarbons production and tetracycline
    adsorption behavior of biochar derived from spent coffee
    ground, Bioresour. Technol., 284 (2019) 197–203. 
-  P. Zhang, Y. Li, Y. Cao, L. Han, Characteristics of tetracycline
    adsorption by cow manure biochar prepared at different
    pyrolysis temperatures, Bioresour. Technol., 285 (2019) 121348,
  doi: 10.1016/j.biortech.2019.121348. 
-  J. Zhao, F. Gao, Y. Sun, W. Fang, X. Li, Y. Dai, New use for
    biochar derived from bovine manure for tetracycline removal,
    J. Environ. Chem. Eng., 9 (2021) 105585, doi: 10.1016/j.jece.2021.105585. 
-  D. Zhang, Q. He, X. Hu, K. Zhang, C. Chen, Y. Xue, Enhanced
    adsorption for the removal of tetracycline hydrochloride (TC)
    using ball-milled biochar derived from crayfish shell, Colloids
    Surf., A, 615 (2021) 126254, doi: 10.1016/j.colsurfa.2021.126254. 
-  K. Wystalska, K. Malińska, M. Barczak, Poultry manure derived
    biochars – the impact of pyrolysis temperature on selected
    properties and potentials for further modifications, J. Sustain.
    Dev. Energy Water Environ. Syst., 9 (2021) 1080337. 
-  J. Sobik-Szołtysek, K. Wystalska, K. Malińska, E. Meers,
    Influence of pyrolysis temperature on the heavy metal sorption
    capacity of biochar from poultry manure, Materials, 14 (2021)
    6566, doi: 10.3390/ma14216566. 
-  B. Song, X. Cao, W. Gao, S. Aziz, S. Gao, C.H. Lam, R. Lin, Preparation
    of nano-biochar from conventional biorefineries for
    high-value applications, Renewable Sustainable Energy Rev.,
  157 (2022) 112057, doi: 10.1016/j.rser.2021.112057. 
-  K. Ghassemi-Golezani, S. Farhangi-Abriz, Improving plant
    available water holding capacity of soil by solid and chemically
    modified biochars, Rhizosphere, 21 (2021) 100469, doi: 10.1016/j.rhisph.2021.100469. 
-  X. Yang, L. Wang, J. Guo, H. Wang, O. Mašek, H. Wang,
    N.S. Bolan, D.S. Alessi, D. Hou, Aging features of metal(loid)
    s in biochar-amended soil: effects of biochar type and aging
    method, Sci. Total Environ., 815 (2022) 152922, doi: 10.1016/j.scitotenv.2022.152922. 
-  Y. Liu, J. Chen, Effect of ageing on biochar properties and
    pollutant management, Chemosphere, 292 (2022) 133427,
    doi: 10.1016/j.chemosphere.2021.133427. 
-  D.C.C. da S. Medeiros, C. Nzediegwu, C. Benally, S.A. Messele,
    J.H. Kwak, M.A. Naeth, Y.S. Ok, S.X. Chang, M. Gamal El-Din,
    Pristine and engineered biochar for the removal of contaminants
    co-existing in several types of industrial wastewaters: a critical
  review, Sci. Total Environ., 809 (2021) 151120, doi: 10.1016/j.scitotenv.2021.151120. 
-  A. Dutta, F. Defersha, Biocharbon, biomethane and biofertilizer
    from cord residue: a hybrid thermos-chemical and biochemical
    approach, Energy, 165 (2018) 370–384. 
-  D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen,
    X. Zhang, S. Varjani, Y. Liu, Feasibility study on a new pomelo
    peel derived biochar for tetracycline antibiotics removal in
    swine wastewater, Sci. Total Environ., 720 (2020) 137662,
    doi: 10.1016/j.scitotenv.2020.137662. 
-  J. Dai, X. Meng, Y. Zhang, Y. Huang, Effects of modification and
    magnetization of rice straw derived biochar on adsorption of
    tetracycline from water, Bioresour. Technol., 311 (2020) 123455,
  doi: 10.1016/j.biortech.2020.123455. 
-  J. Eun Kim, S. Kant Bhatia, H. Jin Song, E. Yoo, H. Jin Jeon,
    J.Y. Yoon, Y. Yang, R. Gurav, Y.H. Yang, H.J. Kim, Y.K. Choi,
    Adsorptive removal of tetracycline from aqueous solution by
    maple leaf-derived biochar, Bioresour. Technol., 306 (2020)
  123092, doi: 10.1016/j.biortech.2020.123092. 
-  Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei,
    L. Luo, M. Lei, L. Tang, Modification of biochar derived from
    sawdust and its application in removal of tetracycline and
    copper from aqueous solution: adsorption mechanism and
    modelling, Bioresour. Technol., 245 (2017) 266–273. 
-  B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, H. Chu, Biochar as a
    low-cost adsorbent for aqueous heavy metal removal: a review,
    J. Anal. Appl. Pyrolysis, 155 (2021) 105081, doi: 10.1016/j.jaap.2021.105081. 
-  H.Q. Li, J.T. Hu, Y. Meng, J.H. Su, X.J. Wang, An investigation
    into the rapid removal of tetracycline using multilayered
    graphene-phase biochar derived from waste chicken feather,
    Sci. Total Environ., 603 (2017) 39–48. 
-  C. Li, S. Xie, Y. Wang, R. Jiang, X. Wang, N. Lv, X. Pan, G. Cai,
    G. Yu, Y. Wang, Multi-functional biochar preparation and
    heavy metal immobilization by co-pyrolysis of livestock feces
    and biomass waste, Waste Manage., 134 (2021) 241–250. 
-  S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi,
    Control of sp2/sp3 carbon ratio and surface chemistry of
    nanodiamond powders by selective oxidation in air, J. Am.
    Chem. Soc., 128 (2006) 11635–11642. 
-  M. Koinuma, H. Tateishi, K. Hatakeyama, S. Miyamoto,
    C. Ogata, A. Funatsu, T. Taniguchi, Y. Matsumoto, Analysis of
    reduced graphene oxides by X-ray photoelectron spectroscopy
    and electrochemical capacitance, Chem. Lett., 42 (2013)
    924–926. 
-  M.K. Rabchinskii, S.A. Ryzhkov, D.A. Kirilenko, N.V. Ulin,
    M.V. Baidakova, V.V. Shnitov, S.I. Pavlov, R.G. Chumakov,
    D.Y. Stolyarova, B.N. Besedina, A.V. Shvidchenko,
    D.V. Potorochin, F. Roth, D.A. Smirnov, M.V. Gudkov,
    M. Brzhezinskaya, O.I. Lebedev, V.P. Melnikov, P.N. Brunkov,
    From graphene oxide towards aminated graphene: facile
    synthesis, its structure and electronic properties, Sci. Rep.,
  10 (2020) 6902, doi: 10.1038/s41598-020-63935-3. 
-  G. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton,
    Probing the thermal deoxygenation of graphene oxide using
    high-resolution in situ X-ray-based spectroscopies, J. Phys.
    Chem. C, 115 (2011) 17009–17019. 
-  J. Wei, G. Yuan, Y. Liu, D. Bi, L. Xiao, J. Lu, B.K.G. Theng,
    H. Wang, L. Zhang, X. Zhang, Assessing the effect of pyrolysis
    temperature on the molecular properties and copper sorption
    capacity of a halophyte biochar, Environ. Pollut., 251 (2019)
    56–65. 
-  A. Tomczyk, Z. Sokołowska, P. Boguta, Biochar physicochemical
    properties: pyrolysis temperature and feedstock kind effects,
    Rev. Environ. Sci. Biotechnol., 19 (2020) 191–215. 
-  J. Heeg, U. Schubert, F. Küchenmeister, Surface chemistry
    of planarized silk-films studied by XPS, Microchim. Acta,
    133 (2000) 113–117. 
-  Z. Tan, L. Liu, H.Q. Zhang, Mechanistic study of the influence
    of pyrolysis conditions on potassium speciation in biochar
    “preparation-application” process, Sci. Total Environ.,
    599–600 (2017) 207–216. 
-  M. Gao, Y. Zhang, X. Gong, Z. Song, Z. Guo, Removal
    mechanism of di-n-butyl phthalate and oxytetracycline from
    aqueous solutions by nano-manganese dioxide modified
    biochar, Environ. Sci. Pollut. Res., 25 (2018) 7796–7807. 
-  Y.J. Oh, J.J. Yoo, Y.I. Kim, J.K. Yoon, H.N. Yoon, J.H. Kim,
    S.B. Park, Oxygen functional groups and electrochemical
    capacitive behavior of incompletely reduced graphene oxides
    as a thin-film electrode of supercapacitor, Electrochim. Acta,
    116 (2014) 118–128. 
-  L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz,
    B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide
    and reduced graphene oxide studied by the XRD, TEM and
    electron spectroscopy methods, J. Electron. Spectrosc. Relat.
    Phenom., 195 (2014) 145–154. 
-  M.K. Rabchinskii, A.T. Dideikin, D.A. Kirilenko, M.V. Baidakova,
    V.V. Shnitov, F. Roth, S.V. Konyakhin, N.A. Besadina,
    S.I. Pavlov, R.A. Kuricyn, N.M. Lebedeva, P.N. Brunkov,
    A.Y’. Vul, Facile reduction of graphene oxide suspensions and
  films using glass wafers, Sci. Rep., 8 (2018) 14154, doi: 10.1038/s41598-018-32488-x. 
-  C. Reshma, H. Hareendrakrishnakumar, M. Raja, J.M. Gladis,
    A.M. Stephan, Sulfur-immobilized nitrogen and oxygen co-doped hierarchically porous biomass carbon for lithium-sulfur
    batteries: influence of sulfur content and distribution on its
    performance, ChemistrySelect, 2 (2017) 10484–10495. 
-  M. Wagstaffe, A.G. Thomas, M.J. Jackman, M. Torres-Molina,
    K.L. Syres, K. Handrup, An experimental investigation of
	  the adsorption of a phosphonic acid on the anatase TiO2(101)
  surface, J. Phys. Chem. C, 120 (2016) 1693–1700. 
-  https://srdata.nist.gov/xps/ 
-  K.N. Wood, S.T. Christensen, D. Nodlund, A.A. Dameron,
    C. Ngo, H. Dinh, T. Gennett, R. O’Hayre, S. Pelypenko,
    Spectroscopic investigation of nitrogen-functionalized carbon
    materials, Surf. Interface Anal., 48 (2016) 283–292. 
-  M. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, L. Pilan,
    Post-polymerization electrochemical functionalization of
    a conducting polymer: diazonium salt electroreduction at
    polypyrrole electrodes, J. Electrochem. Soc., 161 (2014) G103,
    doi: 10.1149/2.0871412jes. 
-  C. Maddi, F. Bourquard, V. Barnier, J. Avila, M.-C. Asensio,
    T. Tite, C. Donnet, F. Garrelie, Nano-architecture of nitrogendoped
    graphene films synthesized from a solid CN source,
  Sci. Rep., 8 (2018) 3247, doi: 10.1038/s41598-018-21639-9. 
-  K. Grodecki, Raman spectroscopy of graphene (Spektroskopia
    ramanowska grafenu), Mater. Elektron., 41 (2013) 47–53
    (in Polish). 
-  L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus,
    Raman spectroscopy in graphene, Phys. Rep., 473 (2009) 51–87. 
-  Z. Tan, S. Yuan, M. Hong, L. Zhang, Q. Huang, Mechanism
    of negative surface charge formation on biochar and its effect
    on the fixation of soil Cd, J. Hazard. Mater., 384 (2020) 121370,
    doi: 10.1016/j.jhazmat.2019.121370. 
-  J.H. Yuan, R.K. Xu, H. Zhang, The forms of alkalis in the
    biochar produced from crop residues at different temperatures,
    Bioresour. Technol. ,102 (2011) 3488–3497. 
-  W. Zuo, N. Li, B. Chen, C. Zhang, Q. Li, M. Yan, Investigation of
    the deprotonation of tetracycline using differential absorbance
    spectra: a comparative experimental and DFT/TD-DFT
    study, Sci. Total Environ., 726 (2020) 138432, doi: 10.1016/j.scitotenv.2020.138432. 
-  S. Rajoriya, S. Bargole, V.K. Saharan, Degradation of a cationic
    dye (Rhodamine 6G) using hydrodynamic cavitation coupled
    with other oxidative agents: Reaction mechanism and pathway,
    Ultrason. Sonochem., 34 (2017) 183–194. 
-  S.J. Olusegun, E.T.F. Freitas, L.R.S. Lara, H.O. Stumpf,
    N.D.S. Mohallem, Effect of drying process and calcination
    on the structural and magnetic properties of cobalt ferrite,
    Ceram. Int., 45 (2019) 8734–8743. 
-  H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.P. Chao,
    Mistakes and inconsistencies regarding adsorption of
    contaminants from aqueous solutions: a critical review, Water
    Res., 120 (2017) 88–116. 
-  M.A. Al-Ghouti, R.S. Al-Absi, Mechanistic understanding of the
    adsorption and thermodynamic aspects of cationic methylene
    blue dye onto cellulosic olive stones biomass from wastewater,
    Sci. Rep., 10 (2020) 15928, doi: 10.1038/s41598-020-72996-3. 
-  M.K. Goftar, K. Moradi, N.M. Kor, N. Moradi, Spectroscopic
    studies on aggregation phenomena of dyes, Eur. J. Exp. Biol.,
    4 (2014) 72–81. 
-  J. Rainer, V. Mrlik, R. Doris, H. Jakub, P. Sedlacek, B. Lucie,
    G. Soja, Biochar surface functional groups as affected by biomass
    feedstock, biochar composition and pyrolysis temperature,
    Carbon Resour. Convers., 4 (2021) 36–46. 
-  Y. Cuixia, X. Yingming, W. Lin, L. Xuefeng, S. Yuebing, Effect
    of different pyrolysis temperatures on physico-chemical
    characteristics and lead(II) removal of biochar derived from
    chicken manure, RSC Adv., 10 (2020) 3667–3674. 
-  L. Liu, G. Liu, J. Zhou, J. Wang, A. Wang, Improved bioreduction
    of nitrobenzene by black carbon/biochar derived from crop
    residues, RSC Adv., 6 (2016) 84388–84396. 
-  H.N. Tran, S.J. You, T.V. Nguyen, H.P. Chao, Insight into the
    adsorption mechanism of cationic dye onto biosorbents derived
    from agricultural wastes, Chem. Eng. Commun., 204 (2017)
    1020–1036. 
-  V. Soares, M.C. Grando, G.L. Colpani, L.L. Silva, J. Maria,
	  M.D.M. Mello, Obtaining of Fe3O4@C core-shell nanoparticles
    as an adsorbent of tetracycline in aqueous solutions, Mater.
  Res., 22 (2019) 1–11. 
-  J. Zang, T. Wu, H. Song, N. Zhou, S. Fan, Z. Xie, J. Tang, Removal
    of tetracycline by hydrous ferric oxide: adsorption kinetics,
    isotherms, and mechanism, Int. J. Environ. Res. Public Health,
  16 (2019) 4580, doi: 10.3390/ijerph16224580. 
-  H. Wang, C. Fang, Q. Wang, Y. Chu, Y. Song, Y. Chen, X. Xue,
    Sorption of tetracycline on biochar derived from rice straw
    and swine manure, RSC Adv., 8 (2018) 16260–16268. 
-  X. Zhang, Y. Li, M. Wu, Y. Pang, Z. Hao, M. Hu, R. Qiu,
    Enhanced adsorption of tetracycline by an iron and manganese
    oxides loaded biochar: kinetics, mechanism and column
    adsorption, Bioresour. Technol., 320 (2021) 124264, doi: 10.1016/j.biortech.2020.124264. 
-  X. Zhang, X. Lin, Y. He, Y. Chen, X. Luo, R. Shang, Study
    on adsorption of tetracycline by Cu-immobilized alginate
    adsorbent from water environment, Int. J. Biol. Macromol.,
    124 (2019) 418–428. 
-  X. Zhu, Y. Liu, F. Qian, C. Zhou, S. Zhang, J. Chen, Bioresource
    technology preparation of magnetic porous carbon from waste
    hydrochar by simultaneous activation and magnetization for
    tetracycline removal, Bioresour. Technol., 154 (2014) 209–214. 
-  H. Wang, Y. Chu, C. Fang, F. Huang, Y. Song, X. Xue, Sorption of
    tetracycline on biochar derived from rice straw under different
    temperatures, PLoS One, 12 (2017) e0182776, doi: 10.1371/journal.pone.0182776. 
-  P. Liao, Z. Zhan, J. Dai, X. Wu, W. Zhang, K. Wang, S. Yuan,
    Adsorption of tetracycline and chloramphenicol in aqueous
    solutions by bamboo charcoal: a batch and fixed-bed column
    study, Chem. Eng. J., 228 (2013) 496–505. 
-  L. Yang, J. Hu, L. He, J. Tang, Y. Zhou, J. Li, K. Ding, One-pot
    synthesis of multifunctional magnetic N-doped graphene
    composite for SERS detection, adsorption separation and
    photocatalytic degradation of Rhodamine 6G, Chem. Eng. J.,
    327 (2017) 694–704. 
-  H. Ren, D.D. Kulkarni, K. Rajesh, W. Xu, I. Choi, Competitive
    adsorption of dopamine and Rhodamine 6G on the surface
    of graphene oxide, ACS Appl. Mater. Interfaces, 6 (2014)
    2459−2470. 
-  G. Annadurai, R. Juang, D. Lee, Adsorption of rhodamine 6G
    from aqueous solutions on activated carbon, J. Environ. Sci.
    Health., Part A, 4529 (2007) 715–725. 
-  H.B. Senturk, D. Ozdes, C. Duran, Biosorption of Rhodamine
    6G from aqueous solutions onto almond shell (Prunus dulcis)
    as a low cost biosorbent, Desalination, 252 (2010) 81–87. 
-  E.P. Santos, R.F. Silva, J.F. Silva, T. Suwunwong, P. Patho,
    P. Choto, K. Phoungthong, Enhancement the rhodamine
	  6G adsorption property on Fe3O4-composited biochar
    derived from rice husk, Mater. Res. Express, 7 (2020) 025511,
  doi: 10.1088/2053-1591/ab6b58. 
-  A. Alizadeh, A. Parizanganeh, A. Zamani, Application of
    cellulosic biomass for removal of cationic dye Rhodamine 6G
    from aqueous solutions, Int. J. Waste Resour., 6 (2016) 100256,
    
 doi: 10.4172/2252-5211.1000256.
-  S.S. Gupta, T.S. Sreeprasad, S.M. Maliyekkal, S.K. Das,
    T. Pradeep, Graphene from sugar and its application in water
    purification, ACS Appl. Mater. Interfaces, 4 (2012) 4156−4163.