References

  1. B. Senthil Rathi, P. Senthil Kumar, D.-V.N. Vo, Critical review on hazardous pollutants in water environment: occurrence, monitoring, fate, removal technologies and risk assessment, Sci. Total Environ., 797 (2021) 149134, doi: 10.1016/j.scitotenv.2021.149134.
  2. A. Inyinbor Adejumoke, O. Adebesin Babatunde, P. Oluyori Abimbola, A. Adelani-Akande Tabitha, O. Dada Adewumi, A. Oreofe Toyin, Water Pollution: Effects, Prevention, and Climatic Impact, M. Glavan, Ed., Water Challenges of an Urbanizing World, InTechOpen, 2018, 72018, doi: 10.5772/intechopen.72018.
  3. N. Ivanova, V. Gugleva, M. Dobreva, I. Pehlivanov, S. Stefanov, V. Andonova, Silver Nanoparticles as Multi-Functional Drug Delivery Systems, M.A. Farrukh, Ed., Nanomedicines, InTechOpen, 2016, doi: 10.5772/intechopen.80238.
  4. S.Y. Wee, N.A.H. Ismail, D.E.M. Haron, F.M. Yusoff, S.M. Praveena, A.Z. Aris, Pharmaceuticals, hormones, plasticizers, and pesticides in drinking water, J. Hazard. Mater., 424 (2022) 127327, doi: 10.1016/j.jhazmat.2021.127327.
  5. A. Pereira, L. Silva, C. Laranjeiro, A. Pena, Assessment of human pharmaceuticals in drinking water catchments, tap and drinking fountain waters, Appl. Sci., 11 (2021) 7062, doi: 10.3390/app11157062.
  6. C. Liu, L. Tan, L. Zhang, W. Tian, L. Ma, A review of the distribution of antibiotics in water in different regions of China and current antibiotic degradation pathways, Front. Environ. Sci., 9 (2021) 692298, doi: 10.3389/fenvs.2021.692298.
  7. C. Manyi-Loh, S. Mamphweli, E. Meyer, A. Okoh, Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications, Molecules, 23 (2018) 795, doi: 10.3390/molecules23040795.
  8. P. Krasucka, B. Pan, O. Yong Sik, D. Mohan, B. Sarkar, P. Oleszczuk, Engineered biochar – a sustainable solution for the removal of antibiotics from water, Chem. Eng. J., 405 (2021) 126926, doi: 10.1016/j.cej.2020.126926.
  9. B. Halling-Sørensen, G. Sengeløv, J. Tjørnelund, Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria, Arch. Environ. Contam. Toxicol., 42 (2002) 263–271.
  10. J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes, Chemosphere, 78 (2010) 533–540.
  11. H. Huang, J. Tang, K. Gao, R. He, H. Zhao, D. Werner, Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics, RSC Adv., 7 (2017) 14640–14648.
  12. S.D. Richardson, C.S. Willson, K.A. Rusch, Use of Rhodamine water tracer in the marshland upwelling system, Ground Water, 42 (2004) 678–688.
  13. Y. Huang, D. Wang, W. Liu, L. Zheng, Y. Wang, X. Liu, M. Fan, Z. Gong, Rapid screening of rhodamine B in food by hydrogel solid-phase extraction coupled with direct fluorescence detection, Food Chem., 316 (2020) 126378, doi: 10.1016/j.foodchem.2020.126378.
  14. L.F. Pinto, A.M. Montaño, C.P. González, G.C. Barón, Removal of rhodamine B in wastewater from the textile industry using geopolymeric material, J. Phys.: Conf. Ser., 1386 (2019) 012040,
    doi: 10.1088/1742-6596/1386/1/012040.
  15. M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction, Food Chem. Toxicol., 48 (2011) 1796–1799.
  16. R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments, J. Environ. Manage., 85 (2007) 956–964.
  17. National Toxicology Program, NTP Toxicology and Carcinogenesis Studies of Rhodamine 6G (C.I. Basic Red 1) (CAS No. 989-38-8) in F344/N Rats and B6C3F1 Mice (Feed Studies), Natl. Toxicol. Program Tech. Rep. Ser., 1989, pp. 1–192.
  18. J. Hoslett, T.M. Massara, S. Malamis, D. Ahmad, I. van den Boogaert, E. Katsou, B. Ahmad, A. Ghazal, S. Simons, L. Wrobel, H. Jouhara, Surface water filtration using granular media and membranes: a review, Sci. Total Environ., 639 (2018) 1268–1282.
  19. V. Kumar, K.K. Jaiswal, M. Verma, M.S. Vlaskin, M. Nanda, P.K. Chauhan, A. Singh, H. Kim, Algae-based sustainable approach for simultaneous removal of micropollutants, and bacteria from urban wastewater and its real-time reuse for aquaculture, Sci. Total Environ., 774 (2021) 145556, doi: 10.1016/j.scitotenv.2021.145556.
  20. M. Nagamine, M. Osial, K. Jackowska, P. Krysinski, J. Widera-Kalinowska, Tetracycline photocatalytic degradation under CdS treatment, J. Mar. Sci. Eng., 8 (2020) 483, doi: 10.3390/jmse8070483.
  21. A.K. Reddy, V.L. Reddy, E. Kwon, K.H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
  22. S.J. Olusegun, G. Larrea, M. Osial, K. Jackowska, P. Krysinski, Photocatalytic degradation of antibiotics by superparamagnetic iron oxide nanoparticles. Tetracycline case, Catalysts, 11 (2021) 1243, doi: 10.3390/catal11101243.
  23. V. Weber, I. Kamika, M.N.B. Momba, Comparing the effect of zinc oxide and titanium dioxide nanoparticles on the ability of moderately halophilic bacteria to treat wastewater, Sci. Rep., 11 (2021) 16969, doi: 10.1038/s41598-021-96413-5.
  24. P. Pietrzyk, N.T. Phuong, S.J. Olusegun, N. Hong Nam, D.T.M. Thanh, M. Giersig, P. Krysiński, M. Osial, Titan yellow and Congo red removal with superparamagnetic iron-oxidebased nanoparticles doped with zinc, Magnetochemistry, 8 (2022) 91, doi: 10.3390/magnetochemistry8080091.
  25. M. Abd Elkodous, G.S. El-Sayyad, S.M. Youssry, H.G. Nada, M. Gobara, M.A. Elsayed, A.M. El-Khawaga, G. Kawamura, W.K. Tan, A.I. El-Batal, A. Matsuda, Carbon-dot-loaded CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: an engineered nanocomposite for wastewater treatment, Sci. Rep., 10 (2020) 11534, doi: 10.1038/s41598-020-68173-1.
  26. S.J. Olusegun, N.D.S. Mohallem, Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles, Environ. Pollut., 260 (2020) 114019, doi: 10.1016/j.envpol.2020.114019.
  27. D.L. Thi, T.P.T. Le, H.T. Do, H.T. Vo, N.T. Pham, T.T. Nguyen, H.T. Cao, P.T. Nguyen, T.M.T. Dinh, H.V. Le, D.L. Tran, Fabrication of porous hydroxyapatite granules as an effective adsorbent for the removal of aqueous Pb(II) ions, J. Chem., 2019 (2019) 8620181, doi: 10.1155/2019/8620181.
  28. L. Lu, J.S. Guest, C.A. Peters, X. Zhu, G.H. Rau, Z.J. Ren, Wastewater treatment for carbon capture and utilization, Nat. Sustain., 1 (2018) 750–758.
  29. N. Hossain, S. Nizamuddin, G. Griffin, P. Selvakannan, N.M. Mubarak, T.M.I. Mahlia, Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production, Sci. Rep., 10 (2020) 18851, doi: 10.1038/s41598-020-75936-3.
  30. J. Sun, X. Liu, F. Zhang, J. Zhou, J. Wu, A. Alsaedi, H. Tasawar, J. Li, Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees, Colloids Surf., A, 563 (2019) 22–30.
  31. W. Xiang, Y. Wan, X. Zhang, Z. Tan, T. Xia, Y. Zheng, B. Gao, Adsorption of tetracycline hydrochloride onto ball-milled biochar: governing factors and mechanisms, Chemosphere, 255 (2020) 127057, doi: 10.1016/j.chemosphere.2020.127057.
  32. Y.X. Seow, Y.H. Tan, N.M. Mubarak, J. Kansedo, M. Khalid, M.L. Ibrahim, M. Ghasemi, A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications, J. Environ. Chem. Eng., 10 (2022) 107017, doi: 10.1016/j.jece.2021.107017.
  33. Y. Zhang, S. Fan, T. Liu, W. Fu, B. Li, A review of biochar prepared by microwave-assisted pyrolysis of organic wastes, Sustainable Energy Technol. Assess., 50 (2022) 101873, doi: 10.1016/j.seta.2021.101873.
  34. Q. Zhang, D. Zhang, W. Lu, M.U. Khan, H. Xu, W. Yi, H. Lei, E. Huo, M. Qian, Y. Zhao, R. Zou, Production of high-density polyethylene biocomposites from rice husk biochar: effects of varying pyrolysis temperature, Sci. Total Environ., 738 (2020) 139910, doi: 10.1016/j.scitotenv.2020.139910.
  35. Q. Shen, Z. Wang, Q. Yu, Y. Cheng, Z. Liu, T. Zhang, S. Zhou, Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues, Environ. Res., 183 (2020) 109195, doi: 10.1016/j.envres.2020.109195.
  36. F. Saremi, M.R. Miroliaei, M. Shahabi Nejad, H. Sheibani, Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves, J. Mol. Liq., 318 (2020) 114126, doi: 10.1016/j.molliq.2020.114126.
  37. H.M. Jang, S. Yoo, Y.K. Choi, S. Park, E. Kan, Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda derived activated biochar, Bioresour. Technol., 259 (2018) 24–31.
  38. V.T. Nguyen, T.B. Nguyen, C.W. Chen, C.M. Hung, T.D.H. Vo, J.H.C. Chang, D. Dong, Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground, Bioresour. Technol., 284 (2019) 197–203.
  39. P. Zhang, Y. Li, Y. Cao, L. Han, Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures, Bioresour. Technol., 285 (2019) 121348, doi: 10.1016/j.biortech.2019.121348.
  40. J. Zhao, F. Gao, Y. Sun, W. Fang, X. Li, Y. Dai, New use for biochar derived from bovine manure for tetracycline removal, J. Environ. Chem. Eng., 9 (2021) 105585, doi: 10.1016/j.jece.2021.105585.
  41. D. Zhang, Q. He, X. Hu, K. Zhang, C. Chen, Y. Xue, Enhanced adsorption for the removal of tetracycline hydrochloride (TC) using ball-milled biochar derived from crayfish shell, Colloids Surf., A, 615 (2021) 126254, doi: 10.1016/j.colsurfa.2021.126254.
  42. K. Wystalska, K. Malińska, M. Barczak, Poultry manure derived biochars – the impact of pyrolysis temperature on selected properties and potentials for further modifications, J. Sustain. Dev. Energy Water Environ. Syst., 9 (2021) 1080337.
  43. J. Sobik-Szołtysek, K. Wystalska, K. Malińska, E. Meers, Influence of pyrolysis temperature on the heavy metal sorption capacity of biochar from poultry manure, Materials, 14 (2021) 6566, doi: 10.3390/ma14216566.
  44. B. Song, X. Cao, W. Gao, S. Aziz, S. Gao, C.H. Lam, R. Lin, Preparation of nano-biochar from conventional biorefineries for high-value applications, Renewable Sustainable Energy Rev., 157 (2022) 112057, doi: 10.1016/j.rser.2021.112057.
  45. K. Ghassemi-Golezani, S. Farhangi-Abriz, Improving plant available water holding capacity of soil by solid and chemically modified biochars, Rhizosphere, 21 (2021) 100469, doi: 10.1016/j.rhisph.2021.100469.
  46. X. Yang, L. Wang, J. Guo, H. Wang, O. Mašek, H. Wang, N.S. Bolan, D.S. Alessi, D. Hou, Aging features of metal(loid) s in biochar-amended soil: effects of biochar type and aging method, Sci. Total Environ., 815 (2022) 152922, doi: 10.1016/j.scitotenv.2022.152922.
  47. Y. Liu, J. Chen, Effect of ageing on biochar properties and pollutant management, Chemosphere, 292 (2022) 133427, doi: 10.1016/j.chemosphere.2021.133427.
  48. D.C.C. da S. Medeiros, C. Nzediegwu, C. Benally, S.A. Messele, J.H. Kwak, M.A. Naeth, Y.S. Ok, S.X. Chang, M. Gamal El-Din, Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: a critical review, Sci. Total Environ., 809 (2021) 151120, doi: 10.1016/j.scitotenv.2021.151120.
  49. A. Dutta, F. Defersha, Biocharbon, biomethane and biofertilizer from cord residue: a hybrid thermos-chemical and biochemical approach, Energy, 165 (2018) 370–384.
  50. D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, X. Zhang, S. Varjani, Y. Liu, Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater, Sci. Total Environ., 720 (2020) 137662, doi: 10.1016/j.scitotenv.2020.137662.
  51. J. Dai, X. Meng, Y. Zhang, Y. Huang, Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water, Bioresour. Technol., 311 (2020) 123455, doi: 10.1016/j.biortech.2020.123455.
  52. J. Eun Kim, S. Kant Bhatia, H. Jin Song, E. Yoo, H. Jin Jeon, J.Y. Yoon, Y. Yang, R. Gurav, Y.H. Yang, H.J. Kim, Y.K. Choi, Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar, Bioresour. Technol., 306 (2020) 123092, doi: 10.1016/j.biortech.2020.123092.
  53. Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei, L. Luo, M. Lei, L. Tang, Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling, Bioresour. Technol., 245 (2017) 266–273.
  54. B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, H. Chu, Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review, J. Anal. Appl. Pyrolysis, 155 (2021) 105081, doi: 10.1016/j.jaap.2021.105081.
  55. H.Q. Li, J.T. Hu, Y. Meng, J.H. Su, X.J. Wang, An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather, Sci. Total Environ., 603 (2017) 39–48.
  56. C. Li, S. Xie, Y. Wang, R. Jiang, X. Wang, N. Lv, X. Pan, G. Cai, G. Yu, Y. Wang, Multi-functional biochar preparation and heavy metal immobilization by co-pyrolysis of livestock feces and biomass waste, Waste Manage., 134 (2021) 241–250.
  57. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air, J. Am. Chem. Soc., 128 (2006) 11635–11642.
  58. M. Koinuma, H. Tateishi, K. Hatakeyama, S. Miyamoto, C. Ogata, A. Funatsu, T. Taniguchi, Y. Matsumoto, Analysis of reduced graphene oxides by X-ray photoelectron spectroscopy and electrochemical capacitance, Chem. Lett., 42 (2013) 924–926.
  59. M.K. Rabchinskii, S.A. Ryzhkov, D.A. Kirilenko, N.V. Ulin, M.V. Baidakova, V.V. Shnitov, S.I. Pavlov, R.G. Chumakov, D.Y. Stolyarova, B.N. Besedina, A.V. Shvidchenko, D.V. Potorochin, F. Roth, D.A. Smirnov, M.V. Gudkov, M. Brzhezinskaya, O.I. Lebedev, V.P. Melnikov, P.N. Brunkov, From graphene oxide towards aminated graphene: facile synthesis, its structure and electronic properties, Sci. Rep., 10 (2020) 6902, doi: 10.1038/s41598-020-63935-3.
  60. G. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies, J. Phys. Chem. C, 115 (2011) 17009–17019.
  61. J. Wei, G. Yuan, Y. Liu, D. Bi, L. Xiao, J. Lu, B.K.G. Theng, H. Wang, L. Zhang, X. Zhang, Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar, Environ. Pollut., 251 (2019) 56–65.
  62. A. Tomczyk, Z. Sokołowska, P. Boguta, Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects, Rev. Environ. Sci. Biotechnol., 19 (2020) 191–215.
  63. J. Heeg, U. Schubert, F. Küchenmeister, Surface chemistry of planarized silk-films studied by XPS, Microchim. Acta, 133 (2000) 113–117.
  64. Z. Tan, L. Liu, H.Q. Zhang, Mechanistic study of the influence of pyrolysis conditions on potassium speciation in biochar “preparation-application” process, Sci. Total Environ., 599–600 (2017) 207–216.
  65. M. Gao, Y. Zhang, X. Gong, Z. Song, Z. Guo, Removal mechanism of di-n-butyl phthalate and oxytetracycline from aqueous solutions by nano-manganese dioxide modified biochar, Environ. Sci. Pollut. Res., 25 (2018) 7796–7807.
  66. Y.J. Oh, J.J. Yoo, Y.I. Kim, J.K. Yoon, H.N. Yoon, J.H. Kim, S.B. Park, Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor, Electrochim. Acta, 116 (2014) 118–128.
  67. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods, J. Electron. Spectrosc. Relat. Phenom., 195 (2014) 145–154.
  68. M.K. Rabchinskii, A.T. Dideikin, D.A. Kirilenko, M.V. Baidakova, V.V. Shnitov, F. Roth, S.V. Konyakhin, N.A. Besadina, S.I. Pavlov, R.A. Kuricyn, N.M. Lebedeva, P.N. Brunkov, A.Y’. Vul, Facile reduction of graphene oxide suspensions and films using glass wafers, Sci. Rep., 8 (2018) 14154, doi: 10.1038/s41598-018-32488-x.
  69. C. Reshma, H. Hareendrakrishnakumar, M. Raja, J.M. Gladis, A.M. Stephan, Sulfur-immobilized nitrogen and oxygen co-doped hierarchically porous biomass carbon for lithium-sulfur batteries: influence of sulfur content and distribution on its performance, ChemistrySelect, 2 (2017) 10484–10495.
  70. M. Wagstaffe, A.G. Thomas, M.J. Jackman, M. Torres-Molina, K.L. Syres, K. Handrup, An experimental investigation of the adsorption of a phosphonic acid on the anatase TiO2(101) surface, J. Phys. Chem. C, 120 (2016) 1693–1700.
  71. https://srdata.nist.gov/xps/
  72. K.N. Wood, S.T. Christensen, D. Nodlund, A.A. Dameron, C. Ngo, H. Dinh, T. Gennett, R. O’Hayre, S. Pelypenko, Spectroscopic investigation of nitrogen-functionalized carbon materials, Surf. Interface Anal., 48 (2016) 283–292.
  73. M. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, L. Pilan, Post-polymerization electrochemical functionalization of a conducting polymer: diazonium salt electroreduction at polypyrrole electrodes, J. Electrochem. Soc., 161 (2014) G103, doi: 10.1149/2.0871412jes.
  74. C. Maddi, F. Bourquard, V. Barnier, J. Avila, M.-C. Asensio, T. Tite, C. Donnet, F. Garrelie, Nano-architecture of nitrogendoped graphene films synthesized from a solid CN source, Sci. Rep., 8 (2018) 3247, doi: 10.1038/s41598-018-21639-9.
  75. K. Grodecki, Raman spectroscopy of graphene (Spektroskopia ramanowska grafenu), Mater. Elektron., 41 (2013) 47–53 (in Polish).
  76. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473 (2009) 51–87.
  77. Z. Tan, S. Yuan, M. Hong, L. Zhang, Q. Huang, Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd, J. Hazard. Mater., 384 (2020) 121370, doi: 10.1016/j.jhazmat.2019.121370.
  78. J.H. Yuan, R.K. Xu, H. Zhang, The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresour. Technol. ,102 (2011) 3488–3497.
  79. W. Zuo, N. Li, B. Chen, C. Zhang, Q. Li, M. Yan, Investigation of the deprotonation of tetracycline using differential absorbance spectra: a comparative experimental and DFT/TD-DFT study, Sci. Total Environ., 726 (2020) 138432, doi: 10.1016/j.scitotenv.2020.138432.
  80. S. Rajoriya, S. Bargole, V.K. Saharan, Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway, Ultrason. Sonochem., 34 (2017) 183–194.
  81. S.J. Olusegun, E.T.F. Freitas, L.R.S. Lara, H.O. Stumpf, N.D.S. Mohallem, Effect of drying process and calcination on the structural and magnetic properties of cobalt ferrite, Ceram. Int., 45 (2019) 8734–8743.
  82. H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  83. M.A. Al-Ghouti, R.S. Al-Absi, Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater, Sci. Rep., 10 (2020) 15928, doi: 10.1038/s41598-020-72996-3.
  84. M.K. Goftar, K. Moradi, N.M. Kor, N. Moradi, Spectroscopic studies on aggregation phenomena of dyes, Eur. J. Exp. Biol., 4 (2014) 72–81.
  85. J. Rainer, V. Mrlik, R. Doris, H. Jakub, P. Sedlacek, B. Lucie, G. Soja, Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature, Carbon Resour. Convers., 4 (2021) 36–46.
  86. Y. Cuixia, X. Yingming, W. Lin, L. Xuefeng, S. Yuebing, Effect of different pyrolysis temperatures on physico-chemical characteristics and lead(II) removal of biochar derived from chicken manure, RSC Adv., 10 (2020) 3667–3674.
  87. L. Liu, G. Liu, J. Zhou, J. Wang, A. Wang, Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues, RSC Adv., 6 (2016) 84388–84396.
  88. H.N. Tran, S.J. You, T.V. Nguyen, H.P. Chao, Insight into the adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes, Chem. Eng. Commun., 204 (2017) 1020–1036.
  89. V. Soares, M.C. Grando, G.L. Colpani, L.L. Silva, J. Maria, M.D.M. Mello, Obtaining of Fe3O4@C core-shell nanoparticles as an adsorbent of tetracycline in aqueous solutions, Mater. Res., 22 (2019) 1–11.
  90. J. Zang, T. Wu, H. Song, N. Zhou, S. Fan, Z. Xie, J. Tang, Removal of tetracycline by hydrous ferric oxide: adsorption kinetics, isotherms, and mechanism, Int. J. Environ. Res. Public Health, 16 (2019) 4580, doi: 10.3390/ijerph16224580.
  91. H. Wang, C. Fang, Q. Wang, Y. Chu, Y. Song, Y. Chen, X. Xue, Sorption of tetracycline on biochar derived from rice straw and swine manure, RSC Adv., 8 (2018) 16260–16268.
  92. X. Zhang, Y. Li, M. Wu, Y. Pang, Z. Hao, M. Hu, R. Qiu, Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: kinetics, mechanism and column adsorption, Bioresour. Technol., 320 (2021) 124264, doi: 10.1016/j.biortech.2020.124264.
  93. X. Zhang, X. Lin, Y. He, Y. Chen, X. Luo, R. Shang, Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment, Int. J. Biol. Macromol., 124 (2019) 418–428.
  94. X. Zhu, Y. Liu, F. Qian, C. Zhou, S. Zhang, J. Chen, Bioresource technology preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal, Bioresour. Technol., 154 (2014) 209–214.
  95. H. Wang, Y. Chu, C. Fang, F. Huang, Y. Song, X. Xue, Sorption of tetracycline on biochar derived from rice straw under different temperatures, PLoS One, 12 (2017) e0182776, doi: 10.1371/journal.pone.0182776.
  96. P. Liao, Z. Zhan, J. Dai, X. Wu, W. Zhang, K. Wang, S. Yuan, Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: a batch and fixed-bed column study, Chem. Eng. J., 228 (2013) 496–505.
  97. L. Yang, J. Hu, L. He, J. Tang, Y. Zhou, J. Li, K. Ding, One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G, Chem. Eng. J., 327 (2017) 694–704.
  98. H. Ren, D.D. Kulkarni, K. Rajesh, W. Xu, I. Choi, Competitive adsorption of dopamine and Rhodamine 6G on the surface of graphene oxide, ACS Appl. Mater. Interfaces, 6 (2014) 2459−2470.
  99. G. Annadurai, R. Juang, D. Lee, Adsorption of rhodamine 6G from aqueous solutions on activated carbon, J. Environ. Sci. Health., Part A, 4529 (2007) 715–725.
  100. H.B. Senturk, D. Ozdes, C. Duran, Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunus dulcis) as a low cost biosorbent, Desalination, 252 (2010) 81–87.
  101. E.P. Santos, R.F. Silva, J.F. Silva, T. Suwunwong, P. Patho, P. Choto, K. Phoungthong, Enhancement the rhodamine 6G adsorption property on Fe3O4-composited biochar derived from rice husk, Mater. Res. Express, 7 (2020) 025511, doi: 10.1088/2053-1591/ab6b58.
  102. A. Alizadeh, A. Parizanganeh, A. Zamani, Application of cellulosic biomass for removal of cationic dye Rhodamine 6G from aqueous solutions, Int. J. Waste Resour., 6 (2016) 100256,
    doi: 10.4172/2252-5211.1000256.
  103. S.S. Gupta, T.S. Sreeprasad, S.M. Maliyekkal, S.K. Das, T. Pradeep, Graphene from sugar and its application in water purification, ACS Appl. Mater. Interfaces, 4 (2012) 4156−4163.