References
- S.A. Carmalin, C. Eder Lima, Removal of emerging contaminants
from the environment by adsorption, Ecotoxicol.
Environ. Saf., 150 (2018) 1–17.
- J. Tan, H. Kuang, C. Wang, J. Liu, Q. Pang, Q. Xie, R.
Fan, Human exposure and health risk assessment of an
increasingly used antibacterial alternative in personal care
products: chloroxylenol, Sci. Total Environ., 786 (2021) 147524,
doi: 10.1016/j.scitotenv.2021.147524.
- D. Choi, S. Oh, Removal of chloroxylenol disinfectant by an
activated sludge microbial community, Microbes Environ.,
34 (2019) 129–135.
- T. Wang, J. He, J. Lu, Y. Zhou, Z. Wang, Y. Zhou, Adsorptive
removal of PPCPs from aqueous solution using carbon-based
composites: a review, Chin. Chem. Lett., 33 (2022) 3585–3593.
- Y. Zhou, G. Cheng, K. Chen, J. Lu, J. Lei, S. Pu, Adsorptive
removal of bisphenol A, chloroxylenol, and carbamazepine
from water using a novel β-cyclodextrin polimer, Ecotoxicol.
Environ. Saf., 170 (2019) 278–285.
- Q. Liu, Y. Zhou, J. Lu, Y. Zhou, Novel cyclodextrin-based
adsorbents for removing pollutants from wastewater: a
critical review, Chemosphere, 241 (2020) 125043, doi: 10.1016/j.chemosphere.2019.125043.
- T. Rasheed, M. Bilal, A.A. Hassan, F. Nabeel, R.N. Bharagava,
L.F.R. Ferreira, H.N. Tran, H.M.N. Iqbal, Environmental
threatening concern and efficient removal of pharmaceutically
active compounds using metal-organic frameworks as
adsorbents, Environ. Res., 185 (2020) 109436, doi: 10.1016/j.envres.2020.109436.
- B.N. Bhadra, D.K. Yoo, S.H. Jhung, Carbon-derived from
metal-organic framework MOF-74: a remarkable adsorbent
to remove a wide range of contaminants of emerging concern
from water, Appl. Surf. Sci., 504 (2020) 144348, doi: 10.1016/j.apsusc.2019.144348.
- F.-f. Liu, J. Zhao, S. Wang, P. Du, B. Xing, Effects of solution
chemistry on adsorption of selected pharmaceuticals and
personal care products (PPCPs) by graphenes and carbon
nanotubes, Environ. Sci. Technol., 48 (2014) 13197–13206.
- J. Wang, H. Man, L. Sun, S. Zang, Carbon black: a good
adsorbent for triclosan removal from water, Water, 14 (2022)
576, doi: 10.3390/w14040576.
- V. Bernal, L. Giraldo, J.C. Moreno-Piraján, Adsorption of
pharmaceutical aromatic pollutants on heat-treated activated
carbons: effect of carbonaceous structure and the adsorbent–adsorbate interactions, ACS Omega, 5 (2020) 15247–15256.
- N.K.E.M. Khori, T. Hadibarata, M.S. Elshikh, A.A. Al-Ghamdi,
Salmiati, Z. Yusop, Triclosan removal by adsorption using
activated carbon derived from waste biomass: isotherms and
kinetic studies, J. Chin. Chem. Soc., 65 (2018) 951–959.
- K. Jedynak, B. Szczepanik, N. Rędzia, P. Słomkiewicz,
A. Kołbus, P. Rogala, Ordered mesoporous carbons for
adsorption of paracetamol and non-steroidal anti-inflammatory
drugs: ibuprofen and naproxen from aqueous solutions, Water,
11 (2019) 1099, doi: 10.3390/w11051099.
- M.J. Ahmed, Adsorption of non-steroidal anti-inflammatory
drugs from aqueous solution using activated carbons: review,
J. Environ. Manage., 190 (2017) 274–282.
- B. Mu, A. Wang, Chapter 11 – Fabrication and Applications
of Carbon/Clay Mineral Nanocomposites, A. Wang, W. Wang,
Eds., Nanomaterials from Clay Minerals: A New Approach to
Green Functional Materials: Micro and Nano Technologies,
Elsevier, 2019, pp. 537–587.
- M.F. Brigatti, E. Galán, B.K.G. Theng, Chapter 2 – Structure
and Mineralogy of Clay Minerals, F. Bergaya, B.K.G. Theng,
G. Lagaly, Eds., Handbook of Clay Science, Volume 1.
Developments in Clay Science, Elsevier, Amsterdam, 2006.
- P. Pasbakhsh, G. Jock Churchman, J.L. Keeling, Characterisation
of properties of various halloysites relevant to their use as
nanotubes and microfibre fillers, Appl. Clay Sci., 74 (2013) 47–57.
- S. Bashkova, T.J. Bandosz, The effects of urea modification and
heat treatment on the process of NO2 removal by wood-based
activated carbon, J. Colloid Interface Sci., 333 (2009) 97–103.
- P. Nowicki, M. Supłat, J. Przepiórski, R. Pietrzak, NO2 removal
on adsorbents obtained by pyrolysis and physical activation of
corrugated cardboard, Chem. Eng. J., 195–196 (2012) 7–14.
- O. Ioannidou, A. Zabaniotou, Agricultural residues as
precursors for activated carbon production—a review,
Renewable Sustainable Energy Rev., 11 (2007) 1966–2005.
- K. Sato, M.A.A. Zaini, Y. Amano, M. Machida, Adsorption of
methylene blue on cardboard-based activated carbons treated
with zinc chloride and potassium hydroxide, J. Environ. Chem.,
28 (2018) 157–161.
- Y. Ma, D. Song, J. Cao, Preparation of activated carbon monolith
from waste corrugated cardboard box via catalytic pyrolysis
and gasification under CO2 atmosphere for adsorption and
solar steam generation, J. Porous Mater., 27 (2020) 1711–1726.
- Y. Gao, Y. Zhang, Y. Ma, Bio-inspired hierarchical porous
activated carbon aerogel from waste corrugated cardboard for
adsorption of oxytetracycline from water, Biomass Convers.
Biorefin., (2022), doi: 10.1007/s13399-022-02936-w.
- B. Szczepanik, N. Rędzia, L. Frydel, P. Słomkiewicz,
A. Kołbus, K. Styszko, T. Dziok, B. Samojeden, Synthesis and
characterization of halloysite/carbon nanocomposites for
enhanced NSAIDs adsorption from water, Materials, 12 (2019)
3754, doi: 10.3390/ma12223754.
- B. Szczepanik, D. Banaś, A. Kubala-Kukuś, K. Szary,
P. Słomkiewicz, N. Rędzia, L. Frydel, Surface properties
of halloysite-carbon nanocomposites and their application
for adsorption of paracetamol, Materials, 13 (2020) 5647,
doi: 10.3390/ma13245647.
- https://pubchem.ncbi.nlm.nih.gov/compound/Chloroxylenol; https://pubchem.ncbi.nlm.nih.gov/
compound/2-Benzyl-4-chlorophenol
- C.K. Lim, H.H. Bay, C.H. Neoh, A. Aris, Z.A. Majid, Z. Ibrahim,
Application of zeolite-activated carbon macrocomposite
for the adsorption of Acid Orange 7: isotherm, kinetic and
thermodynamic studies, Environ. Sci. Pollut. Res., 20 (2013)
7243–7255.
- S. Kodama, H. Sekiguchi, Estimation of point of zero charge
for activated carbon treated with atmospheric pressure nonthermal
oxygen plasmas, Thin Solid Films, 506–507 (2006)
327–330.
- B. Szczepanik, P. Słomkiewicz, M. Garnuszek, K. Czech,
D. Banaś, A. Kubala-Kukuś, I. Stabrawa, The effect of
chemical modification on the physico-chemical characteristics
of halloysite: FT-IR, XRF, and XRD studies, J. Mol. Struct.,
1084 (2015) 16–22.
- P. Yuan, D. Tan, F. Annabi-Bergaya, W. Yan, M. Fan, D. Liu,
H. He, Changes in structure, morphology, porosity, and surface
activity of mesoporous halloysite nanotubes under heating,
Clays Clay Miner., 60 (2012) 561–573.
- E. Joussein, S. Petit, B. Delvaux, Behavior of halloysite clay
under formamide treatment, Appl. Clay Sci., 35 (2007) 17–24.
- H. Cheng, R.L. Frost, J. Yang, Q. Liu, J. He, Infrared and infrared
emission spectroscopic study of typical Chinese kaolinite and
halloysite, Spectrochim. Acta, Part A, 77 (2010) 1014–1020.
- A. Larasati, G.D. Fowler, N.J.D. Graham, Chemical regeneration
of granular activated carbon: preliminary evaluation of
alternative regenerant solutions, Environ. Sci. Water Res.
Technol., 6 (2020) 2043–2056.
- D.H.S. Santos, J.P.T.S. Santos, J.L.S. Duarte, L.M.T.M. Oliveira,
J. Tonholo, L. Meili, C.L.P.S. Zanta, Regeneration of activated
carbon adsorbent by anodic and cathodic electrochemical
process, Process Saf. Environ. Prot., 159 (2022) 1150–1163.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances, Kungliga Svenska Vetenskapsakademiens,
Handlingar, 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon
solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–59.
- R. Komers, D. Tomanová, L. Beránek, Adsorption of weak
bases from the gas phase on organic ion-exchangers, J. Catal.,
30 (1973) 343–349.
- V. Bernal, A. Erto, L. Giraldo, J.C. Moreno-Piraján, Effect of
solution pH on the adsorption of paracetamol on chemically
modified activated carbons, Molecules, 22 (2017) 1032,
doi: 10.3390/molecules22071032.