References

  1. S.A. Carmalin, C. Eder Lima, Removal of emerging contaminants from the environment by adsorption, Ecotoxicol. Environ. Saf., 150 (2018) 1–17.
  2. J. Tan, H. Kuang, C. Wang, J. Liu, Q. Pang, Q. Xie, R. Fan, Human exposure and health risk assessment of an increasingly used antibacterial alternative in personal care products: chloroxylenol, Sci. Total Environ., 786 (2021) 147524, doi: 10.1016/j.scitotenv.2021.147524.
  3. D. Choi, S. Oh, Removal of chloroxylenol disinfectant by an activated sludge microbial community, Microbes Environ., 34 (2019) 129–135.
  4. T. Wang, J. He, J. Lu, Y. Zhou, Z. Wang, Y. Zhou, Adsorptive removal of PPCPs from aqueous solution using carbon-based composites: a review, Chin. Chem. Lett., 33 (2022) 3585–3593.
  5. Y. Zhou, G. Cheng, K. Chen, J. Lu, J. Lei, S. Pu, Adsorptive removal of bisphenol A, chloroxylenol, and carbamazepine from water using a novel β-cyclodextrin polimer, Ecotoxicol. Environ. Saf., 170 (2019) 278–285.
  6. Q. Liu, Y. Zhou, J. Lu, Y. Zhou, Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review, Chemosphere, 241 (2020) 125043, doi: 10.1016/j.chemosphere.2019.125043.
  7. T. Rasheed, M. Bilal, A.A. Hassan, F. Nabeel, R.N. Bharagava, L.F.R. Ferreira, H.N. Tran, H.M.N. Iqbal, Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents, Environ. Res., 185 (2020) 109436, doi: 10.1016/j.envres.2020.109436.
  8. B.N. Bhadra, D.K. Yoo, S.H. Jhung, Carbon-derived from metal-organic framework MOF-74: a remarkable adsorbent to remove a wide range of contaminants of emerging concern from water, Appl. Surf. Sci., 504 (2020) 144348, doi: 10.1016/j.apsusc.2019.144348.
  9. F.-f. Liu, J. Zhao, S. Wang, P. Du, B. Xing, Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes, Environ. Sci. Technol., 48 (2014) 13197–13206.
  10. J. Wang, H. Man, L. Sun, S. Zang, Carbon black: a good adsorbent for triclosan removal from water, Water, 14 (2022) 576, doi: 10.3390/w14040576.
  11. V. Bernal, L. Giraldo, J.C. Moreno-Piraján, Adsorption of pharmaceutical aromatic pollutants on heat-treated activated carbons: effect of carbonaceous structure and the adsorbent–adsorbate interactions, ACS Omega, 5 (2020) 15247–15256.
  12. N.K.E.M. Khori, T. Hadibarata, M.S. Elshikh, A.A. Al-Ghamdi, Salmiati, Z. Yusop, Triclosan removal by adsorption using activated carbon derived from waste biomass: isotherms and kinetic studies, J. Chin. Chem. Soc., 65 (2018) 951–959.
  13. K. Jedynak, B. Szczepanik, N. Rędzia, P. Słomkiewicz, A. Kołbus, P. Rogala, Ordered mesoporous carbons for adsorption of paracetamol and non-steroidal anti-inflammatory drugs: ibuprofen and naproxen from aqueous solutions, Water, 11 (2019) 1099, doi: 10.3390/w11051099.
  14. M.J. Ahmed, Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review, J. Environ. Manage., 190 (2017) 274–282.
  15. B. Mu, A. Wang, Chapter 11 – Fabrication and Applications of Carbon/Clay Mineral Nanocomposites, A. Wang, W. Wang, Eds., Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials: Micro and Nano Technologies, Elsevier, 2019, pp. 537–587.
  16. M.F. Brigatti, E. Galán, B.K.G. Theng, Chapter 2 – Structure and Mineralogy of Clay Minerals, F. Bergaya, B.K.G. Theng, G. Lagaly, Eds., Handbook of Clay Science, Volume 1. Developments in Clay Science, Elsevier, Amsterdam, 2006.
  17. P. Pasbakhsh, G. Jock Churchman, J.L. Keeling, Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers, Appl. Clay Sci., 74 (2013) 47–57.
  18. S. Bashkova, T.J. Bandosz, The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon, J. Colloid Interface Sci., 333 (2009) 97–103.
  19. P. Nowicki, M. Supłat, J. Przepiórski, R. Pietrzak, NO2 removal on adsorbents obtained by pyrolysis and physical activation of corrugated cardboard, Chem. Eng. J., 195–196 (2012) 7–14.
  20. O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production—a review, Renewable Sustainable Energy Rev., 11 (2007) 1966–2005.
  21. K. Sato, M.A.A. Zaini, Y. Amano, M. Machida, Adsorption of methylene blue on cardboard-based activated carbons treated with zinc chloride and potassium hydroxide, J. Environ. Chem., 28 (2018) 157–161.
  22. Y. Ma, D. Song, J. Cao, Preparation of activated carbon monolith from waste corrugated cardboard box via catalytic pyrolysis and gasification under CO2 atmosphere for adsorption and solar steam generation, J. Porous Mater., 27 (2020) 1711–1726.
  23. Y. Gao, Y. Zhang, Y. Ma, Bio-inspired hierarchical porous activated carbon aerogel from waste corrugated cardboard for adsorption of oxytetracycline from water, Biomass Convers. Biorefin., (2022), doi: 10.1007/s13399-022-02936-w.
  24. B. Szczepanik, N. Rędzia, L. Frydel, P. Słomkiewicz, A. Kołbus, K. Styszko, T. Dziok, B. Samojeden, Synthesis and characterization of halloysite/carbon nanocomposites for enhanced NSAIDs adsorption from water, Materials, 12 (2019) 3754, doi: 10.3390/ma12223754.
  25. B. Szczepanik, D. Banaś, A. Kubala-Kukuś, K. Szary, P. Słomkiewicz, N. Rędzia, L. Frydel, Surface properties of halloysite-carbon nanocomposites and their application for adsorption of paracetamol, Materials, 13 (2020) 5647, doi: 10.3390/ma13245647.
  26. https://pubchem.ncbi.nlm.nih.gov/compound/Chloroxylenol; https://pubchem.ncbi.nlm.nih.gov/ compound/2-Benzyl-4-chlorophenol
  27. C.K. Lim, H.H. Bay, C.H. Neoh, A. Aris, Z.A. Majid, Z. Ibrahim, Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies, Environ. Sci. Pollut. Res., 20 (2013) 7243–7255.
  28. S. Kodama, H. Sekiguchi, Estimation of point of zero charge for activated carbon treated with atmospheric pressure nonthermal oxygen plasmas, Thin Solid Films, 506–507 (2006) 327–330.
  29. B. Szczepanik, P. Słomkiewicz, M. Garnuszek, K. Czech, D. Banaś, A. Kubala-Kukuś, I. Stabrawa, The effect of chemical modification on the physico-chemical characteristics of halloysite: FT-IR, XRF, and XRD studies, J. Mol. Struct., 1084 (2015) 16–22.
  30. P. Yuan, D. Tan, F. Annabi-Bergaya, W. Yan, M. Fan, D. Liu, H. He, Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating, Clays Clay Miner., 60 (2012) 561–573.
  31. E. Joussein, S. Petit, B. Delvaux, Behavior of halloysite clay under formamide treatment, Appl. Clay Sci., 35 (2007) 17–24.
  32. H. Cheng, R.L. Frost, J. Yang, Q. Liu, J. He, Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite, Spectrochim. Acta, Part A, 77 (2010) 1014–1020.
  33. A. Larasati, G.D. Fowler, N.J.D. Graham, Chemical regeneration of granular activated carbon: preliminary evaluation of alternative regenerant solutions, Environ. Sci. Water Res. Technol., 6 (2020) 2043–2056.
  34. D.H.S. Santos, J.P.T.S. Santos, J.L.S. Duarte, L.M.T.M. Oliveira, J. Tonholo, L. Meili, C.L.P.S. Zanta, Regeneration of activated carbon adsorbent by anodic and cathodic electrochemical process, Process Saf. Environ. Prot., 159 (2022) 1150–1163.
  35. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  36. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  37. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–59.
  38. R. Komers, D. Tomanová, L. Beránek, Adsorption of weak bases from the gas phase on organic ion-exchangers, J. Catal., 30 (1973) 343–349.
  39. V. Bernal, A. Erto, L. Giraldo, J.C. Moreno-Piraján, Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons, Molecules, 22 (2017) 1032, doi: 10.3390/molecules22071032.