References
- T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M.N. Iqbal,
Environmentally-related contaminants of high concern:
potential sources and analytical modalities for detection,
quantification, and treatment, Environ. Int., 122 (2019) 52–66.
- H. Ali, E. Khan, I. Ilahi, Environmental chemistry and
ecotoxicology of hazardous heavy metals: environmental
persistence, toxicity, and bioaccumulation, J. Chem., 2019 (2019)
1–14.
- L. Yang, Q. Ren, K. Zheng, Z. Jiao, X. Ruan, Y. Wang, Migration
of heavy metals in the soil-grape system and potential
health risk assessment. Sci. Total Environ., 806 (2022) 150646,
doi: 10.1016/j.scitotenv.2021.150646.
- S. Mishra, R.N. Bharagava, N. More, A. Yadav, S. Zainith,
S. Mani, P. Chowdhary, Heavy Metal Contamination: An
Alarming Threat to Environment and Human Health, R. Sobti,
N. Arora, R. Kothari, Eds., Environmental Biotechnology:
For Sustainable Future, Springer, Singapore, 2019, pp. 103–125.
- Y. Zhang, B.M Birmann, J. Han, E.L. Giovannucci, F.E. Speizer,
M.J. Stampfer, E.S. Schernhammer, Personal use of permanent
hair dyes and cancer risk and mortality in US women:
prospective cohort study, BMJ, 370 (2020) 1–12.
- S. Negahdari, M. Sabaghan, M. Pirhadi, M. Alikord, M. Darvishi,
M. Nazer, Potential harmful effects of heavy metals as a toxic
and carcinogenic agent in marine food-an overview, Egypt. J.
Vet. Sci., 52 (2021) 379–385.
- C. Peng, K. Zhang, M. Wang, X. Wan, W. Chen, Estimation
of the accumulation rates and health risks of heavy metals in
residential soils of three metropolitan cities in China, J. Environ.
Sci., 115 (2022) 149–161.
- K. Nahar, M. Chowdhury, A. Khair, A. Hossain, A. Rahman,
K. Mohiuddin, Heavy metals in handloom-dyeing effluents
and their biosorption by agricultural by-products, Environ. Sci.
Pollut. Res., 25 (2018) 7954–7967.
- S.K. Kahlon, G. Sharma, J. Julka, A. Kumar, S. Sharma,
F.J. Stadler, Impact of heavy metals and nanoparticles on
aquatic biota, Environ. Chem. Lett., 16 (2018) 919–946.
- K. Yunus, M. Zuraidah, A. John, A review on the accumulation
of heavy metals in coastal sediment of Peninsular Malaysia,
Ecofeminism Clim. Change, 1 (2020) 21–35.
- S. Velusamy, A. Roy, S. Sundaram, T.M. Kumar, A review
on heavy metal ions and containing dyes removal through
graphene oxide-based adsorption strategies for textile
wastewater treatment, Chem. Rec., 21 (2021) 1570–1610.
- A. Singh, D.B. Pal, A. Mohammad, A. Alhazmi, S. Haque,
N. Srivastava, V.K. Gupta, Biological remediation technologies
for dyes and heavy metals in wastewater treatment: new
insight, Bioresour. Technol., 343 (2022) 126154, doi: 10.1016/j.
biortech.2021.126154.
- J.O. Ighalo, P.S. Yap, K.O. Iwuozor, K. Dulta, F.U. Iwuchukwu,
S. Rangabhashiyam, Adsorption of persistent organic
pollutants (POPs) from the aqueous environment by nanoadsorbents:
a review, Environ. Res., 212 (2022) 113123,
doi: 10.1016/j.envres.2022.113123.
- U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, K. Pal, O.A. Osibote,
H.S. Kusuma, H. Darmokoesoemo, A facile review on the
sorption of heavy metals and dyes using bionanocomposites,
Adsorpt. Sci. Technol., 2022 (2022) 1–36.
- K. Khulbe, T. Matsuura, Removal of heavy metals and
pollutants by membrane adsorption techniques, Appl. Water
Sci., 8 (2018) 1–30.
- A. Elgarahy, K. Elwakeel, S. Mohammad, G. Elshoubaky,
A critical review of biosorption of dyes, heavy metals
and metalloids from wastewater as an efficient and green
process, Cleaner Eng. Technol., 4 (2021) 100209, doi: 10.1016/j.
clet.2021.100209.
- M. Zhang, Z. Zhang, Y. Peng, L. Feng, X. Li, C. Zhao, K. Sarfaraz,
Novel cationic polymer modified magnetic chitosan beads
for efficient adsorption of heavy metals and dyes over a wide
pH range, Int. J. Biol. Macromol., 156 (2020) 289–301.
- M. Arabi, O. Ostovan, J. Li, X. Wang, Z. Zhang, J. Choo, L. Chen,
Molecular imprinting: green perspectives and strategies,
Adv. Mater., 33 (2021) 2100543, doi: 10.1002/adma.202100543.
- M.M. Moein, Advancements of chiral molecularly imprinted
polymers in separation and sensor fields: a review of
the last decade, Talanta, 224 (2021) 121794, doi: 10.1016/j.
talanta.2020.121794.
- M. Janczura, P. Luliński, M. Sobiech, Imprinting technology
for effective sorbent fabrication: current state-of-art and future
prospects, Materials, 14 (2021) 1850, doi: 10.3390/ma14081850.
- E. Turiel, A. Martín-Esteban, Molecularly imprinted polymersbased
microextraction techniques, TrAC, Trends Anal. Chem.,
118 (2019) 574–586.
- M. Guć, G. Schroeder, Molecularly imprinted polymers
and magnetic molecularly imprinted polymers for selective
determination of estrogens in water by ESI-MS/FAPA-MS,
Biomolecules, 10 (2020) 672–692.
- M.I. Malik, H. Shaikh, G. Mustafa, M.I. Bhanger, Recent
applications of molecularly imprinted polymers in analytical
chemistry, Sep. Purif. Rev., 48 (2019) 179–219.
- G.T Jayasinghe, A. Moreda-Piñeiro, Molecularly imprinted
polymers for dispersive (micro)solid phase extraction: a review,
Separations, 8 (2021) 99, doi: 10.3390/separations8070099.
- S. Ramanavicius, U. Samukaite-Bubniene, V. Ratautaite,
M. Bechelany, A. Ramanavicius, Electrochemical molecularly
imprinted polymer based sensors for pharmaceutical and
biomedical applications (review), J. Pharm. Biomed. Anal.,
215 (2022) 114739, doi: 10.1016/j.jpba.2022.114739.
- S. Roshan, A. Mujahid, A. Afzal, I. Nisar, M.N. Ahmad,
S.Z. Bajwa, Molecularly imprinted polymer-silica hybrid
particles for biomimetic recognition of target drugs, Adv. Polym.
Technol., 2019 (2019) 9432412, doi: 10.1155/2019/9432412.
- M.D. Ariani, A. Zuhrotun, P. Manesiotis, A.N. Hasanah,
Magnetic molecularly imprinted polymers: an update on
their use in the separation of active compounds from natural
products, Polymers, 14 (2022) 1389, doi: 10.3390/polym14071389.
- Q. Ding, Z. Guo, W. Chen, X. Zhu, Q. Liu, M. Fu, Biomass
activated carbon–derived imprinted polymer with multiboronic
acid sites for selective capture of glycoprotein,
J. Colloid Interface Sci., 596 (2021) 225–232.
- A.R. Bagheri, N. Aramesh, H.K. Lee, Chitosan- and/or cellulosebased
materials in analytical extraction processes: a review,
TrAC, Trends Anal. Chem., 157 (2022) 116770, doi: 10.1016/j.trac.2022.116770.
- A. Paul, T. Warner, C. John, Green Chemistry: Theory and
Practice, Oxford University Press, Oxford, New York, 1998,
pp. 13940–13941.
- A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of
green analytical chemistry and the SIGNIFICANCE mnemonic
of green analytical practices, TrAC, Trends Anal. Chem.,
50 (2013) 78–84.
- P.M. Nowak, R. Wietecha-Posłuszny, J. Pawliszyn, White
analytical chemistry: an approach to reconcile the principles
of green analytical chemistry and functionality, TrAC, Trends
Anal. Chem., 138 (2021) 116223, doi: 10.1016/j.trac.2021.116223.
- P.M. Nowak, P. Kościelniak, What color is your method?
adaptation of the RGB additive color model to analytical
method evaluation, Anal. Chem., 91 (2019) 10343–10352.
- A. Martín‐Esteban, Green molecularly imprinted polymers for
sustainable sample preparation, J. Sep. Sci., 45 (2022) 233–245.
- F. Pena-Pereira, W. Wojnowski, M. Tobiszewski, AGREE—
analytical GREEnness metric approach and software, Anal.
Chem., 92 (2020) 10076–10082.
- K.A. Van, L. Strekowski, L. Patiny, EcoScale, a semi-quantitative
tool to select an organic preparation based on economical and
ecological parameters, Beilstein J. Org. Chem., 2 (2006) 1–7.
- K. Haupt, P.X.R Medina, B.T.S. Bui, Molecularly imprinted
polymers: antibody mimics for bioimaging and therapy, Chem.
Rev., 120 (2020) 9554–9582.
- P.S. Sharma, Z. Iskierko, A. Pietrzyk-Le, F. D’Souza, W. Kutner,
Bioinspired intelligent molecularly imprinted polymers for
chemosensing: a mini review, Electrochem. Commun., 50 (2015)
81–87.
- A.A. Ensafi, N. Kazemifard, Z.D. Saberi, Chapter 3 – Parameters
That Affect Molecular Imprinting Polymers, M.P. Sooraj, A.S. Nair,
B. Mathew, S. Thomas. Eds., Molecularly Imprinted Polymer
Composites: Synthesis, Characterisation and Applications, Woodhead
Publishing Series in Composites Science and Engineering,
Elsevier Publishing Group, The Netherlands, 2021, pp. 21–48.
- S. Farooq, H. Wu, J. Nie, S. Ahmad, I. Muhammad, R. Khan,
A. Asim, Application, advancement and green aspects of
magnetic molecularly imprinted polymers in pesticide residue
detection, Sci. Total Environ., 804 (2022) 150293, doi: 10.1016/j.scitotenv.2021.150293.
- A.N. Hasanah, F.S. Maelaningsih, F. Apriliandi, A. Sabarudin,
Synthesis and characterisation of a monolithic imprinted
column using a methacrylic acid monomer with porogen
propanol for atenolol analysis, J. Anal Methods Chem.,
2020 (2020) 3027618, doi: 10.1155/2020/3027618.
- E. Kianfar, S. Mafi, Ionic liquids: properties, application, and
synthesis, Fine Chem. Eng., 1 (2021) 22–31.
- J. Maculewicz, K. Świacka, P. Stepnowski, J. Dołżonek, A. Białk-
Bielińska, Ionic liquids as potentially hazardous pollutants:
evidences of their presence in the environment and recent
analytical developments, J. Hazard. Mater., 437 (2022) 129353,
doi: 10.1016/j.jhazmat.2022.129353.
- C.W. Cho, T.P.T, Pham, Y. Zhao, S. Stolte, Y.S. Yun, Review of
the toxic effects of ionic liquid, Sci. Total Environ., 786 (2021)
147309, doi: 10.1016/j.scitotenv.2021.147309.
- X. Wu, J. Du, M. Li, L. Wu, C. Han, F. Su, Recent advances
in green reagents for molecularly imprinted polymers,
RSC Adv., 8 (2018) 311–327.
- S. Ding, Z. Lyu, X. Niu, Y. Zhou, M. Falahati, D. Du, Y. Lin,
Integrating ionic liquids with molecular imprinting technology
for biorecognition and biosensing: a review, Biosens.
Bioelectron., 149 (2020) 111830, doi: 10.1016/j.bios.2019.111830.
- L. Guo, Q. Deng, G. Fang, W. Gao, S. Wang, Preparation and
evaluation of molecularly imprinted ionic liquids polymer as
sorbent for on-line solid-phase extraction of chlorsulfuron in
environmental water samples, J. Chromatogr. A, 1218 (2011)
6271–6277.
- L. Chen, X. Wang, W. Lu, X. Wu, J. Li, Molecular imprinting: perspectives
and applications, Chem. Soc. Rev., 45 (2016) 2137–2211.
- A. Mueller, A note about crosslinking density in imprinting
polymerization, Molecules, 26 (2021) 5139, doi: 10.3390/
molecules26175139.
- M. Singh, S. Singh, S.P. Singh, S.S. Patel, Recent advancement of
carbon nanomaterials engrained molecular imprinted polymer
for environmental matrix, Trends Environ. Anal. Chem.,
27 (2020) e00092, doi: 10.1016/j.teac.2020.e00092.
- M. Włoch, J. Datta, Chapter 2 – Synthesis and Polymerisation
Techniques of Molecularly Imprinted Polymers, In: Comprehensive
Analytical Chemistry, Elsevier, Elsevier Publishing
Group, The Netherlands, 2019, pp. 17–40.
- J. Zhang, M. Wang, P. Liu, X. Zhang, T. Huo, C. Liu, S. Zhao,
Z. Chen, Study on synthesis and adsorption properties of
glutathione surface molecular imprinting polymer, Pigm.
Resin Technol., 50 (2021) 585–594.
- Y. Kitayama, K. Yoshikawa, T. Takeuchi, Post-cross-linked
molecular imprinting with functional polymers as a
universal building block for artificial polymeric receptors,
Macromolecules, 50 (2017) 7526–7534.
- K. Chen, Y. Zhao, Effects of nano-confinement and
conformational mobility on molecular imprinting of crosslinked
micelles, Org. Biomol. Chem., 17 (2019) 8611–8617.
- A.M. Abass, J.M. Rzaij, A review on: molecularly imprinting
polymers by ion selective electrodes for determination drugs,
J. Chem. Rev., 2 (2020) 148–156.
- A. Azizi, C.S. Bottaro, A critical review of molecularly
imprinted polymers for the analysis of organic pollutants in
environmental water samples, J. Chromatogr. A, 1614 (2020)
460603, doi: 10.1016/j.chroma.2019.460603.
- N.F.L. Che, A.L. Ahmad, S.C. Low, N.D. Zaulkiflee, Isotherm
and electrochemical properties of atrazine sensing using
PVC/MIP: effect of porogenic solvent concentration ratio,
Membranes, 11 (2021) 657–675.
- T. Sajini, B. Mathew, A brief overview of molecularly imprinted
polymers: highlighting computational design, nano and
photo-responsive imprinting, Talanta Open., 4 (2021) 1–20.
- F.A. Cajamarca, C.R.T Tarley, Influence of synthesis parameters
and polymerization methods on the selective and adsorptive
performance of bio-inspired ion imprinted polymers,
Separations, 9 (2022) 266–293.
- N. Murdaya, A.L. Triadenda, D. Rahayu, A.N. Hasanah,
A review: using multiple templates for molecular imprinted
polymer: is it good?, Polymers, 14 (2022) 4441–4463.
- H. Liu, P. Jin, F. Zhu, L. Nie, H. Qiu, A review on the use of
ionic liquids in preparation of molecularly imprinted polymers
for applications in solid-phase extraction, TrAC, Trends Anal.
Chem., 134 (2021) 116132, doi: 10.1016/j.trac.2020.116132.
- K. Booker, C.I. Holdsworth, C.M. Doherty, A.J. Hill,
M.C. Bowyer, A. McCluskey, Ionic liquids as porogens for
molecularly imprinted polymers: propranolol, a model study,
Org. Biomol. Chem., 12 (2014) 7201–7210.
- R. Viveiros, S. Rebocho, T. Casimiro, Green strategies for
molecularly imprinted polymer development, Polymers,
10 (2018) 1–27.
- J.C. Lee, C.R. Kim, H.S. Byun, Synthesis and adsorption
properties of carbamazepine imprinted polymer by dispersion
polymerization in supercritical carbon dioxide, Korean J.
Chem. Eng., 31 (2014) 2266–2273.
- C. Unger, P.A. Lieberzeit, Molecularly imprinted thin film
surfaces in sensing: chances and challenges, React. Funct.
Polym., 161 (2021) 104855, doi: 10.1016/j.reactfunctpolym.2021.104855.
- E.T. Kweinor, S. Rathilal, M.O. Amankwa, I.D. Amoah,
M.N. Chollom, Molecular Imprinting Technology: A New
Approach for Antibacterial Materials, Inamuddin, M.I. Ahamed,
R. Prasad, Eds., Advanced Antimicrobial Materials and
Applications. Environmental and Microbial Biotechnology,
Springer, Singapore, 2021, pp. 393–421.
- S. Beyazit, B.B.S. Tse, K. Haupt, C. Gonzato, Molecularly
imprinted polymer nanomaterials and nanocomposites by
controlled/living radical polymerization, Prog. Polym. Sci.,
62 (2016) 1–21.
- O.I. Parisi, F. Francomano, M. Dattilo, S. Prete, F. Amone,
F. Puoci, The evolution of molecular recognition: from
antibodies to molecularly imprinted polymers (MIPs) as
artificial counterpart, J. Funct. Biomater., 13 (2022) 12–38.
- K.F. Pratama, D. Rahayu, A.N. Hasanah, Effect of the
molecularly imprinted polymer component ratio on analytical
performance, Chem. Pharm. Bull., 68 (2020) 1013–1024.
- E. Verheyen, J.P. Schillemans, M. Wijk, M.A. Demeniex,
W.E. Hennink,
C.F. Nostrum, Challenges for the effective
molecular imprinting of proteins, Biomaterials, 32 (2011)
3008–3020.
- A.K. Venkataraman, J.R. Clegg, N.A. Peppas, Polymer
composition primarily determines the protein recognition
characteristics of molecularly imprinted hydrogels, J. Mater.
Chem. B, 8 (2020) 7685–7695.
- M. Cejner, R. Dobrowolski, Ion-imprinted polymers: synthesis,
characterization and applications, Ann. Chem., 70 (2016) 2–12.
- Ö. Erdem, Y. Saylan, M. Andaç, A. Denizli, Molecularly
imprinted polymers for removal of metal ions: an alternative
treatment method, Biomimetics, 3 (2018) 38–53.
- G. Sharma, B. Kandasubramanian, Molecularly imprinted
polymers for selective recognition and extraction of heavy
metal ions and toxic dyes, J. Chem. Eng. Data, 65 (2020) 396–418.
- L. Mergola, S. Scorrano, E. Bloise, M. Catalano, G. Vasapollo,
R.S. Del, Novel polymeric sorbents based on imprinted Hg(II)-
diphenylcarbazone complexes for mercury removal from
drinking water, Polym. J., 48 (2016) 73–79.
- H. Zhang, L. Ye, K. Mosbach, Non-covalent molecular
imprinting with emphasis on its application in separation
and drug development, J. Mol. Recognit., 19 (2006) 248–259.
- E.K. Reville, E.H. Sylvester, S.J. Benware, S.S. Negi, E.B. Berda,
Customizable molecular recognition: advancements in design,
synthesis, and application of molecularly imprinted polymers,
Polym. Chem., 13 (2022) 3387–3411.
- G. Wulff, Enzyme-like catalysis by molecularly imprinted
polymers, Chem. Rev., 102 (2002) 1–28.
- M. Gao, Y. Gao, G. Chen, X. Huang, X. Xu, J. Lv, J. Wang, D. Xu,
G. Liu, Recent advances and future trends in the detection of
contaminants by molecularly imprinted polymers in food
samples, Front. Chem., 8 (2020) 1–20.
- X. Wu, Synthetic Strategies for the Generation of Molecularly
Imprinted Polymers, Z. Liu, Y. Huang, Y. Yang, Eds.,
Molecularly Imprinted Polymers as Advanced Drug Delivery
Systems, Springer, Singapore, 2021, pp. 27–59.
- F. Yemiş, P. Alkan, B. Yenigül, Molecularly imprinted polymers
and their synthesis by different methods, Polym. Polym.
Compos., 21 (2013) 145–150.
- A.G. Mayes, M.J. Whitcombe, Synthetic strategies for the
generation of molecularly imprinted organic polymers,
Adv. Drug Delivery Rev., 57 (2005) 1742–1778.
- M. Resmini, Molecularly imprinted polymers as biomimetic
catalysts, Anal. Bioanal. Chem., 402 (2012) 3021–3026.
- I. Bogdan-Cezar, B.E. Andreea, O. Luminița, B. Ede, Metal–
Ligand Interactions in Molecular Imprinting, C. Saravanan,
B. Biswas, Ed., Ligand, IntechOpen, 2018, pp. 1–18.
- E. Tamahkar, A. Denizli, Metal ion coordination interactions for
biomolecule recognition: a review, Hittite J. Sci. Eng., 1 (2015)
26–31.
- H. Hu, J. Xue, X. Wen, W. Li, C. Zhang, L. Yang, Y. Xu, G. Zhao,
Sugar–metal ion interactions: the complicated coordination
structures of cesium ion with D-ribose and myo-inositol,
Inorg. Chem., 52 (2013) 13132–13145.
- C.C. Villa, L.T. Sánchez, G.A. Valencia, S. Ahmed, T.J. Gutiérrez,
Molecularly imprinted polymers for food applications:
a review, Trends Food Sci. Technol., 111 (2021) 642–669.
- L. Wang, K. Zhi, Y. Zhang, Y. Liu, L. Zhang, A. Yasin, Q. Lin,
Molecularly imprinted polymers for gossypol via sol–gel, bulk,
and surface layer imprinting—a comparative study, Polymers,
11 (2019) 602–620.
- J. Fu, L. Chen, J. Li, Z. Zhang, Current status and challenges of
ion imprinting, J. Mater. Chem. A, 3 (2015) 13598–13627.
- G. Ertürk, B. Mattiasson, Molecular imprinting techniques
used for the preparation of biosensors, Sensors, 17 (2017)
288–305.
- G. Razym, M. Bakhshpour, H. Yavuz, Ç. Kip, A. Tuncel,
A. Denizli, Surface-imprinted silica particles for Concanavalin
A purification from Canavalia ensiformis, J. Chromatogr. B,
1136 (2020) 121852, doi: 10.1016/j.jchromb.2019.121852.
- M. Díaz-Álvarez, A. Martín-Esteban, Molecularly imprinted
polymer-quantum dot materials in optical sensors: an
overview of their synthesis and applications, Biosensors,
11 (2021) 79–97.
- R.A. Fonseca, L.N.C Dasilva, G.N. Matos, I.F. Ierick, T.L. Ferreira
TL, Magnetic MIPs: Synthesis and Applications, A. Martín-
Esteban, Ed., Molecularly Imprinted Polymers. Methods in
Molecular Biology, Vol. 2359, Humana, New York, NY, 2021,
pp. 85–96.
- L. Xu, Y.A. Huang, Q.J. Zhu, C. Ye, Chitosan in molecularlyimprinted
polymers: current and future prospects, Int. J. Mol.
Sci., 16 (2015) 18328–18347.
- S.M.E. Nilsson, S. Suriyanarayanan, S. Kathiravan, J. Yli-
Kauhaluoma, T. Kotiaho, Enantioselective hyperporous
molecularly imprinted thin film polymers, RSC. Adv., 9 (2019)
33653–33656.
- M. Wei, Y. Gao, X. Li, M.J. Serpe, Stimuli-responsive polymers
and their applications, Polym. Chem., 8 (2017) 127–143.
- S. Aslıyüce, N. Idil, B. Mattiasson, Upgrading of bio-separation
and bioanalysis using synthetic polymers: molecularly
imprinted polymers (MIPs), cryogels, stimuli-responsive
polymers, Eng. Life Sci., 22 (2022) 204–216.
- H. Musarurwa, N.T. Tawanda, Stimuli-responsive molecularly
imprinted polymers as adsorbents of analytes in complex
matrices, Microchem. J., 181 (2022) 107750, doi: 10.1016/j.microc.2022.107750.
- Y. Toyoshima, A. Kawamura, Y. Takashima, T. Miyata, Design
of molecularly imprinted hydrogels with thermoresponsive
drug binding sites, J. Mater. Chem. B, 10 (2022) 6644–6654.
- O. Ofoegbu, D.C. Ike, H. Fouad, R.S. Srichana, I. Nicholls,
Molecularly imprinted chitosan-based thin films with
selectivity for nicotine derivatives for application as a biosensor
and filter, Polymers, 13 (2021) 3363–3382.
- F. Lanza, A.J. Hall, B. Sellergren, A. Bereczki, G. Horvai,
S. Bayoudh, D.C. Sherrington, Development of a
semiautomated procedure for the synthesis and evaluation
of molecularly imprinted polymers applied to the search
for functional monomers for phenytoin and nifedipine,
Anal. Chim. Acta, 435 (2001) 91–106.
- A.N. Hasanah, N. Safitri, A. Zulfa, N. Neli, D. Rahayu, Factors
affecting preparation of molecularly imprinted polymer and
methods on finding template-monomer interaction as the key
of selective properties of the materials, Molecules, 26 (2021)
5612–5636.
- B. Sellergren, C. Dauwe, T. Schneider, Pressure-induced
binding sites in molecularly imprinted network polymers,
Macromolecules, 30 (1997) 2454–2459.
- M. Chiarello, L. Anfossi, S. Cavalera, F. Nardo, F. Artusio,
C Baggiani, Effect of polymerization time on the binding
properties of ciprofloxacin-imprinted nanoMIPs prepared by
solid-phase synthesis, Polymers, 13 (2021) 2656–2679.
- E.V. Piletska, A.R. Guerreiro, M.J. Whitcombe, S.A. Piletsky,
Influence of the polymerization conditions on the performance
of molecularly imprinted polymers, Macromolecules,
42 (2009) 4921–4928.
- C. Branger, W. Meouche, A. Margaillan, Recent advances
on ion-imprinted polymers, React. Funct. Polym., 73 (2013)
859–875.
- M. Caldara, J. Kulpa, J.W. Lowdon, T.J. Cleij, H. Diliën,
K. Eersels, Recent advances in molecularly imprinted
polymers for glucose monitoring: from fundamental research
to commercial application, Chemosensors, 11 (2023) 32–56.
- A. Planchart, A. Green, C. Hoyo, C.J. Mattingly, Heavy metal
exposure and metabolic syndrome: evidence from human and
model system studies, Curr. Environ. Health Rep., 5 (2018)
110–124.
- Z, Fu, S. Xi, The effects of heavy metals on human metabolism,
Toxicol. Mech. Methods, 30 (2020) 167–176.
- S. Rajendran, K.S. Khoo, T.K. Hoang, H.S. Ng, C Karaman,
Y. Orooji, P.L. Show, A critical review on various remediation
approaches for heavy metal contaminants removal from
contaminated soils, Chemosphere, 287 (2022) 132369,
doi: 10.1016/j.chemosphere.2021.132369.
- M.M. Uddin, M.C.M Zakeel, J.S. Zavahir, I. Jahan, Heavy
metal accumulation in rice and aquatic plants used as human
food: a general review, Toxics, 9 (2021) 1–19.
- W.C. Prozialeck, J.R. Edwards, Mechanisms of cadmiuminduced
proximal tubule injury: new insights with
implications for biomonitoring and therapeutic interventions,
J. Pharmacol. Exp. Ther., 343 (2012) 2–12.
- G. Genchi, M.S. Sinicropi, G. Lauria, A. Carocci, A. Catalano,
The effects of cadmium toxicity, Int. J. Environ. Res. Public
Health, 17 (2020) 3782–3806.
- Q. Cai, M.L. Long, M. Zhu, Q.Z. Zhou, L. Zhang, J. Liu,
Food chain transfer of cadmium and lead to cattle in a lead–
zinc smelter in Guizhou, China, Environ. Pollut., 157 (2009)
3078–3082.
- G. Han, J. Wang, H. Sun, B. Liu, Y. Huang, A critical review on
the removal and recovery of hazardous Cd from Cd-containing
secondary resources in Cu-Pb-Zn smelting processes, Metals,
12 (2022) 1846–1870.
- M. Rafati-Rahimzadeh, S. Kazemi, A. Moghadamnia,
Cadmium toxicity and treatment: an update, Caspian J. Int.
Med., 8 (2017) 135–145.
- A.S. Caio, G. Cleber, A.C. Fábio, A. Valfredo, C.M. Heloysa,
Application of a novel ion-imprinted polymer to the
separation of traces of CDII ions in natural water: optimization
by Box–Behnken design, J. Braz. Chem. Soc., 30 (2019) 873–881.
- H. Wang, Y. Lin, Y. Li, A. Dolgormaa, H. Fang, L. Guo,
J. Huang, J. Yang, A novel magnetic Cd(II) ion-imprinted
polymer as a selective sorbent for the removal of cadmium
ions from aqueous solution, J. Inorg. Organomet. Polym.
Mater., 29 (2019) 1874–1885.
- X. Xu, M. Wang, Q. Wu, Z. Xu, X. Tian, Synthesis and
application of novel magnetic ion-imprinted polymers for
selective solid phase extraction of cadmium(II), Polymers,
9 (2017) 360–381.
- S. Guo, F. Zhang, D. Li, P. Jiao, Highly efficient and selective
removal of cadmium from aqueous solutions based on
magnetic graphitic carbon nitride materials with molecularly
imprinted polymers, J. Mol. Struct., 1221 (2020) 1–11.
- C. Xie, S. Wei, D. Chen, W. Lan, Z. Yan, Z. Wang, Preparation
of magnetic ion imprinted polymer with waste beer yeast
as functional monomer for Cd(II) adsorption and detection,
RSC Adv., 9 (2019) 23474–23483.
- D. Rahangdale, A. Kumar, G. Archana, R.S. Dhodapkar, Ion
cum molecularly dual imprinted polymer for simultaneous
removal of cadmium and salicylic acid, J. Mol. Recognit.,
31 (2018) 1–14.
- K.T. Biswas, M.M Yusoff, S.M. Sarjadi, B. Musta, M.L. Rahman,
Ion-imprinted polymer for selective separation of cobalt,
cadmium and lead ions from aqueous media, Sep. Sci.
Technol., 56 (2021) 671–680.
- F. Beckers, J. Rinklebe, Cycling of mercury in the environment:
Sources, fate, and human health implications: a review,
Crit. Rev. Env. Sci. Technol., 47 (2017) 693–794.
- H.C. Chuang, H.T. Huang, B.Y. Chen, Z.H. Lee Y.J. Lin,
Effect of methylmercury exposure on bioaccumulation and
nonspecific immune responses in hybrid grouper Epinephelus
fuscoguttatus × Epinephelus lanceolatus, Animals, 12 (2022)
147–161.
- J.H. Lin, S.J. Chen, W.Y. Chu, C.J. Yu, C.F. Chen, The detection
of Mercury(II) ions using fluorescent gold nanoclusters on a
portable paper-based device, Chem. Eng. J., 430 (2022) 133070,
doi: 10.1016/j.cej.2021.133070.
- W.F. Fitzgerald, C.H. Lamborg, Geochemistry of Mercury in
the Environment, H.D. Holland, K. Karl, Treatise on Geochemistry,
Pergamon, 2007, pp. 1–47.
- N. Pirrone, S. Cinnirella, X. Feng, R.B. Finkelman, J. Leaner,
R. Mason, G.B. Stracher, D.G. Streets, Global mercury
emissions to the atmosphere from anthropogenic and natural
sources, Atmos. Chem. Phys., 10 (2010) 5951–5964.
- N.A.S. Khairi, N.A. Yusof, A.H. Abdullah, F. Mohammad,
Removal of toxic mercury from petroleum oil by newly
synthesized molecularly-imprinted polymer, Int. J. Mol. Sci.,
16 (2015) 10562–10577.
- D.N.Z. Basir, A. Muhammad, B. Muhammad, The synthesis of
imprinted polymer sorbent for the removal of mercury ions,
Songklanakarin J. Sci. Technol., 42 (2020) 1135–1141.
- T. Velempini, K. Pillay, X.Y. Mbianda, O.A. Arotiba, Carboxymethyl
cellulose thiol-imprinted polymers: synthesis,
characterization and selective Hg(II) adsorption, J. Environ.
Sci., 79 (2019) 280–296.
- F. Esmali, Y. Mansourpanah, K. Farhadi, S. Amani, A. Rasoulifard,
M. Ulbricht, Fabrication of a novel and highly selective
ion-imprinted PES-based porous adsorber membrane for
the removal of mercury(II) from water, Sep. Purif. Technol.,
250 (2020) 117183, doi: 10.1016/j.seppur.2020.117183.
- A.A. Keller, A.S. Adeleye, L. Zhao, G.N. Cherr, J. Hong,
H.A. Godwin, S. Hanna, Comparative environmental fate and
toxicity of copper nanomaterials, NanoImpact, 7 (2017) 28–40.
- S.M. Gosavi, S.D. Tapkir, P. Kumkar, C.R. Verma, S.S. Kharat, Act
now before its too late: copper exposure drives chemo-ecology
of predator-prey dynamics of freshwater common spiny loach,
Lepidocephalichthys thermalis (Valenciennes, 1846), Environ.
Res., 186 (2020) 109509, doi: 10.1016/j.envres.2020.109509.
- C.K. Kwan, E. Sanford, J. Long, Copper pollution increases
the relative importance of predation risk in an aquatic food
web, PLoS One, 10 (2015) e0133329, doi: 10.1371/journal.pone.0133329.
- A.A. Taylor, J.S. Tsuji, M.E. McArdle, W.L. Goodfellow,
Recommended reference values for risk assessment of oral
exposure to copper, Risk Anal., 1 (2022) 1–8.
- W. Liu, Z. An, L. Qin, M. Wang, X. Liu, Y. Yang, Construction
of a novel ion imprinted film to remove low concentration
Cu2+ from aqueous solution, Chem. Eng. J., 411 (2021) 1–9.
- Y. Sun, Y. Gu, P. Zhang, Adsorption properties and recognition
mechanisms of a novel surface imprinted polymer for
selective removal of Cu(II)-citrate complexes, J. Hazard.
Mater., 424 (2022) 127735, doi: 10.1016/j.jhazmat.2021.127735.
- L. Wang, J. Li, J. Wang, X. Guo, X. Wang, J. Choo, L. Chen,
Green multi-functional monomer based ion imprinted
polymers for selective removal of copper ions from aqueous
solution, J. Colloid Interface Sci., 541 (2019) 376–386.
- P. Wang, X. Tang, L. Hu, Y. Yin, S. Chen, H. Wang, J. Wu, Synthesis
of an ion-imprinted degreasing cotton for the selective
removal of Cu2+ from aqueous solutions, ChemistrySelect,
4 (2019) 14169–14174.
- S. Rais, A. Islam, I. Ahmad, S. Kumar, A. Chauhan, H. Javed,
Preparation of a new magnetic ion-imprinted polymer and
optimization using Box–Behnken design for selective removal
and determination of Cu(II) in food and wastewater samples,
Food Chem., 334 (2021) 1–9.
- A. Chaipuang, C. Phungpanya, C. Thongpoon, K. Watlaiad,
P. Inkaew, T. Machan, O. Suwantong, Effect of ethylene
diamine tetra-acetic acid and functional monomers on
the structure and adsorption properties of copper(II) ionimprinted
polymers, Polym. Adv. Technol., 32 (2021)
3000–3007.
- W. Liu, L. Qin, Z. An, L. Chen, X. Liu, Y. Yang, B. Xu, Thermoresponsive
ion imprinted polymer on the surface of magnetic
carbon microspheres for identification and removal of lowconcentrations
of Cu2+, Environ. Chem., 15 (2018) 306–316.
- S. Kumar, E. Alveroğlu, A. Balouch, F.N. Talpur, M.S. Jagirani,
A.M. Mahar, D. Mal, S. Lal, Fabrication of chromiumimprinted
polymer: a real magneto-selective sorbent for the
removal of Cr(VI) ions in real water samples, New J. Chem.,
44 (2020) 18668–18678.
- R. Huang, X. Ma, X. Li, L. Guo, X. Xie, M. Zhang, J. Li,
A novel ion-imprinted polymer based on graphene oxidemesoporous
silica nanosheet for fast and efficient removal of
chromium(VI) from aqueous solution, J. Colloid Interface Sci.,
514 (2018) 544–553.
- H.R. Yang, C. Yang, S.S. Li, G.L. Song, Q.D. An, Z.Y. Xiao,
Site-imprinted hollow composites with integrated functions
for ultra-efficient capture of hexavalent chromium from
water, Sep. Purif. Technol., 284 (2022) 120240, doi: 10.1016/j.seppur.2021.120240.
- Y.A. Neolaka, H.S. Kusuma, Synthesis and characterization
of natural zeolite with ordered ion imprinted polymer
structures (IIP@AFINZ) for selective Cr(VI) adsorption from
aqueous solution, Moroccan J. Chem., 7 (2019) 194–210.
- N.H. Elsayed, M. Monier, M.A. Albalawi, A.S. Alhawiti,
Preparation of chromium(III) ion-imprinted polymer based
on azo dye functionalized chitosan, Carbohydr. Polym.,
284 (2022) 119139, doi: 10.1016/j.carbpol.2022.119139.
- Y. Liu, X. Meng, Z. Liu, M. Meng, F. Jiang, M. Luo, L. Ni, J. Qiu,
G. Zhong, Preparation of a two-dimensional ion-imprinted
polymer based on a graphene oxide/SiO2 composite for the
selective adsorption of nickel ions, Langmuir, 31 (2015)
8841–8851.
- S. Kumar, A. Balouch, E. Alveroğlu, M.S. Jagirani,
M.A. Mughal, D. Mal, Fabrication of nickel-tagged magnetic
imprinted polymeric network for the selective extraction of
Ni(II) from the real aqueous samples, Environ. Sci. Pollut. Res.
Int., 28 (2021) 40022–40034.
- X. Ao, H. Guan, Preparation of Pb(II) ion-imprinted polymers
and their application in selective removal from wastewater,
Adsorpt. Sci. Technol., 36 (2018) 774–787.
- Z. Zhang, X. Zhang, D. Niu, Y. Li, J. Shi, Highly efficient and
selective removal of trace lead from aqueous solutions by
hollow mesoporous silica loaded with molecularly imprinted
polymers, J. Hazard. Mater., 328 (2017) 160–169.
- A. Kuanar, S.K. Kabi, M. Rath, N.K. Dhal, R. Bhuyan,
S. Das, D. Kar, A comparative review on bioremediation of
chromium
by bacterial, fungal, algal and microbial consortia,
Geomicrobiol.
J., 39 (2022) 515–530.
- F. Chen, S. Guo, Y. Wang, L. Ma, B. Li, Z. Song, L. Huang,
W. Zhang, Concurrent adsorption and reduction of
chromium(VI) to chromium(III) using nitrogen-doped porous
carbon adsorbent derived from loofah sponge, Front. Environ.
Sci. Eng., 16 (2021) 57–65.
- M. Babapour, M.D. Hadi, M. Alimohammadi, M. Salari,
L. Rasuli, N.M. Mubarak, N.K. Ahmad, Adsorption of
Cr(VI) from aqueous solution using mesoporous metalorganic
framework-5 functionalized with the amino acids:
characterization, optimization, linear and nonlinear kinetic
models, J. Mol. Liq., 345 (2022) 117835, doi: 10.1016/j.molliq.2021.
117835.
- S. Mehdipour-Ataei, E. Aram, Mesoporous carbonbased
materials: a review of synthesis, modification, and
applications, Catalysts, 13 (2023) 2–21.
- Y. Sheth, S. Dharaskar, M. Khalid, S. Sonawane, An
environment friendly approach for heavy metal removal from
industrial wastewater using chitosan based biosorbent: a
review, Sustainable Energy Technol. Assess., 43 (2021) 100951,
doi: 10.1016/j.seta.2020.100951.
- R. Kaveh, M. Bagherzadeh, Simultaneous removal of mercury
ions and cationic and anionic dyes from aqueous solution
using epichlorohydrin cross-linked chitosan@magnetic
Fe3O4/activated carbon nanocomposite as an adsorbent,
Diamond Relat. Mater., 124 (2022) 108923, doi: 10.1016/j.diamond.2022.108923.
- G. Genchi, A. Carocci, G. Lauria, M.S. Sinicropi, A. Catalano,
Nickel: human health and environmental toxicology, Int. J.
Environ. Res. Public Health, 17 (2020) 679–691.
- A. Kumar, D.K. Jigyasu, A. Kumar, G. Subrahmanyam,
R. Mondal, A.A. Shabnam, S.K. Malyan, D.K. Gupta, Nickel
in terrestrial biota: comprehensive review on contamination,
toxicity, tolerance and its remediation approaches, Chemosphere,
275 (2021) 129996, doi: 10.1016/j.chemosphere.2021.129996.
- H. He, Q. Gan, C. Feng, Preparation and application of Ni(II)
ion-imprinted silica gel polymer for selective separation of
Ni(II) from aqueous solution, RSC Adv., 7 (2017) 15102–15111.
- A. Kumar, A. Balouch, A.A. Pathan, Synthesis, adsorption and
analytical applicability of Ni-imprinted polymer for selective
adsorption of Ni2+ ions from the aqueous environment,
Polym. Test., 77 (2019) 105871, doi: 10.1016/j.polymertesting.2019.04.018.
- H. Faghihian, Z. Adibmehr, Comparative performance of
novel magnetic ion-imprinted adsorbents employed for Cd2+,
Cu2+ and Ni2+ removal from aqueous solutions, Environ. Sci.
Pollut. Res., 25 (2018) 15068–15079.
- N. Guo, S.J. Su, B. Liao, W.Y. Sun, Preparation and properties
of a novel macro porous Ni2+-imprinted chitosan foam
adsorbents for adsorption of nickel ions from aqueous
solution, Carbohydr. Polym., 165 (2017) 376–383.
- W. Liu, M. Zhang, X. Liu, H. Zhang, J. Jiao, H. Zhu, Z. Zhou,
Z. Ren, Preparation of surface ion-imprinted materials based
on modified chitosan for highly selective recognition and
adsorption of nickel ions in aqueous solutions, Ind. Eng.
Chem. Res., 59 (2020) 6033–6042.
- R. Nag, E. Cummins, Human health risk assessment of lead
(Pb) through the environmental-food pathway, Sci. Total
Environ., 810 (2020) 151168, doi: 10.1016/j.scitotenv.2021.151168.
- M.M. Ali, M.S. Islam, M.S. Bhuyan, M.Z. Rahman,
M.M. Rahman, Toxic metal pollution and ecological risk
assessment in water and sediment at ship breaking sites in the
Bay of Bengal Coast, Bangladesh, Mar. Pollut. Bull., 175 (2022)
113274, doi: 10.1016/j.marpolbul.2021.113274.
- A. Kumar, A.K. Chaturvedi, A.A. Shabnam, G. Subrahmanyam,
D.K. Gupta, S.S. Kumar, Lead toxicity: health hazards, influence
on food chain, and sustainable remediation approaches,
Int. J. Environ. Res. Public Health, 17 (2020) 2179–2192.
- Y. Liu, Z. Liu, J. Gao, J. Dai, J. Han, J. Xie, Y. Yan, Selective
adsorption behavior of Pb(II) by mesoporous silica
SBA-15-supported Pb(II)-imprinted polymer based on
surface molecularly imprinting technique, J. Hazard. Mater.,
186 (2011) 197–205.
- C. Esen, M. Andac, N. Bereli, R. Say, E. Henden, A. Denizli,
Highly selective ion-imprinted particles for solid-phase
extraction of Pb2+ ions, Mater. Sci. Eng. C, 29 (2009) 2464–2470.
- C.R. Tarley, F.N. Andrade, H.D. Santana, L.A. Beijo,
M.G. Segatelli, Ion-imprinted polyvinylimidazole-silica hybrid
copolymer for selective extraction of Pb(II): characterization
and metal adsorption kinetic and thermodynamic studies,
React. Funct. Polym., 72 (2012) 83–91.
- C. Li, J. Gao, J. Pan, Z. Zhang, Y. Yan, Synthesis, characterization,
and adsorption performance of Pb(II)-imprinted polymer in
nano-TiO2 matrix, J. Environ. Sci., 21 (2009) 1722–1729.
- X. Cai, J. Li, Z. Zhang, F. Yang, R. Dong, L. Chen, Novel
Pb2+ ion imprinted polymers based on ionic interaction via
synergy of dual functional monomers for selective solidphase
extraction of Pb2+ in water samples, ACS Appl. Mater.
Interfaces, 6 (2014) 305–313.
- V. Chauhan, P. Gautam, S.S. Kanwar, Chapter 20 – Azo Dyes:
A Notorious Class of Water Pollutant, and Role of Enzymes
to Decolorize and Degrade Them, M.P. Shah, S. Rodriguez-
Couto, R.T. Kapoor, Eds., Development in Wastewater
Treatment Research and Processes, Innovative Microbe-
Based Applications for Removal of Chemicals and Metals in
Wastewater Treatment
Plants, Elsevier, Elsevier Publishing
Group, The Netherlands, 2022, pp. 433–448.
- A.R. Bagheri, N. Aramesh, A.A. Khan, I. Gul, M. Bilal,
Molecularly imprinted polymers-based adsorption and
photocatalytic approaches for mitigation of environmentallyhazardous
pollutants – a review, J. Environ. Chem. Eng.,
9 (2021) 104879, doi: 10.1016/j.jece.2020.104879.
- A. Khan, A. Roy, S. Bhasin, T.B. Emran, A. Khusro, A. Eftekhari,
H. Rokni, F. Karimi, Nanomaterials: an alternative source for
biodegradation of toxic dyes, Food Chem. Toxicol., 164 (2022)
112996, doi: 10.1016/j.fct.2022.112996.
- M.M. Hassan, C.M. Carr, A critical review on recent
advancements of the removal of reactive dyes from dyehouse
effluent by ion-exchange adsorbents, Chemosphere,
209 (2018) 201–219.
- R. Shoukat, S.J. Khan, Y. Jamal, Hybrid anaerobic-aerobic
biological treatment for real textile wastewater, J. Water
Process Eng., 29 (2019) 100804, doi: 10.1016/j.jwpe.2019.100804.
- M. Hasanpour, M. Hatami, Photocatalytic performance
of aerogels for organic dyes removal from wastewaters:
review study, J. Mol. Liq., 309 (2020) 113094, doi: 10.1016/j.molliq.2020.113094.
- A. Tiwari, M. Joshi, N. Salvi, D. Gupta, S. Gandhi,
R.K. Tekade, Chapter 21 – Toxicity of Pharmaceutical Azo
Dyes, R.K. Tekade, Ed., Pharmacokinetics and Toxicokinetic
Considerations, Volume 2 in Advances in Pharmaceutical
Product Development and Research, Academic Press, Elsevier
Publishing Group, The Netherlands, 2022, pp. 569–603.
- K. Liu, Y. Yang, F. Sun, Y. Liu, M. Tang, J. Chen, Rapid
degradation of Congo red wastewater by Rhodopseudomonas
palustris intimately coupled carbon nanotube – silver modified
titanium dioxide photocatalytic composite with sodium
alginate, Chemosphere, 299 (2022) 134417, doi: 10.1016/j.chemosphere.2022.134417.
- N. Asses, L. Ayed, N. Hkiri, M. Hamdi, Congo red
decolorization and detoxification by Aspergillus niger: removal
mechanisms and dye degradation pathway, Biomed Res.
Int., 2018 (2018) 1–9.
- F. Liu, S. Zhang, G. Wang, J. Zhao, Z. Guo, A novel bifunctional
molecularly imprinted polymer for determination of Congo
red in food, RSC Adv., 5 (2015) 22811–22817.
- S.R. Shafqat, S.A. Bhawani, S. Bakhtiar, M.N.M. Ibrahim,
Synthesis of molecularly imprinted polymer for removal of
Congo red, BMC Chem., 14 (2020) 27–38.
- D. Yuan, D. Fu, C. Wang, Selective removal of Congo red from
wastewater using molecularly imprinted polymer, Sep. Sci.
Technol., 56 (2021) 233–241.
- P.K. Gillman, CNS toxicity involving methylene blue: the
exemplar for understanding and predicting drug interactions
that precipitate serotonin toxicity, J. Psychopharmacol.,
25 (2011) 429–436.
- I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad,
S. Ahmad, N. Zada, L.A. Shah, Review on Methylene blue:
its properties, uses, toxicity and photodegradation, Water,
14 (2022) 242–261.
- Y. Sun, L. Bai, C. Han, X. Lv, X. Sun, T. Wang, Hybrid
amino-functionalized TiO2/sodium lignosulfonate surface
molecularly
imprinted polymer for effective scavenging of
methylene blue from wastewater, J. Cleaner Prod., 337 (2022)
130457, doi: 10.1016/j.jclepro.2022.130457.
- H. Xu, P. Zhang, S.Y. Zhou, Q. Jia, Fullerene functionalized
magnetic molecularly imprinted polymer: synthesis,
characterization and application for efficient adsorption of
Methylene blue, Chin. J. Anal. Chem., 48 (2020) e20107–e20113.
- R. Zhao, X. Li, B. Sun, Y. Li, C. Wang, Preparation of
molecularly imprinted sericin/poly(vinyl alcohol) electrospun
fibers for selective removal of methylene blue, Chem. Res.
Chin. Univ., 33 (2017) 986–994.
- D.R. Sulistina, S. Martini, The effect of Rhodamine B on the
cerebellum and brainstem tissue of Rattus norvegicus, J. Public
Health Res., 9 (2020) 1812–1832.
- A.A. Al-Gheethi, Q.M. Azhar, A.A. Yusuf, A.K. Al-Buriahi,
M.M. Al-shaibani, Sustainable approaches for removing
Rhodamine B dye using agricultural waste adsorbents: a
review, Chemosphere, 287 (2022) 132080, doi: 10.1016/j.chemosphere.2021.132080.
- S. Jahankhah, M.M. Sabzehmeidani, M. Ghaedi, K. Dashtian,
Hydrophilic magnetic molecularly imprinted resin in
PVDF membrane for efficient selective removal of dye,
J. Environ. Manage., 300 (2021) 113707, doi: 10.1016/j.jenvman.2021.113707.
- M. Arabi, A. Ostovan, A.R. Bagheri, X. Guo, J. Li, J. Ma, L. Chen,
Hydrophilic molecularly imprinted nanospheres for the
extraction of rhodamine B followed by HPLC analysis: a
green approach and hazardous waste elimination, Talanta,
215 (2020) 120933, doi: 10.1016/j.talanta.2020.120933.
- H. Zhai, L. Huang, Z. Chen, Z. Su, K. Yuan, G. Liang, Y. Pan,
Chip-based molecularly imprinted monolithic capillary array
columns coated GO/SiO2 for selective extraction and
sensitive determination of Rhodamine B in chili powder,
Food Chem., 214 (2017) 664–669.
- A.R. Bagheri, M. Ghaedi, Synthesis of chitosan based
molecularly imprinted polymer for pipette-tip solid phase
extraction of Rhodamine B from chili powder samples,
Int. J. Biol. Macromol., 139 (2019) 40–48.
- F. Vargas, P. Romecín, A.I. García-Guillén, R.Wangesteen,
P. Vargas-Tendero, J. García-Estañ, Flavonoids in kidney
health and disease, Front. Physiol., 9 (2018) 1–12.
- Z. Dogan, A. Cetin, E. Elibol, N. Vardi, Y. Turkoz, Effects of
ciprofloxacin and quercetin on fetal brain development: a
biochemical and histopathological study, J. Maternal-Fetal
Neonatal Med., 32 (2019) 1783–1791.
- S.S. Hassan, H.A. Shafy, M.S. Mansour, H.E. Sayour, Quercetin
recovery from onion solid waste via solid-phase extraction
using molecularly imprinted polymer nanoparticles,
Int. J. Food Eng., 15 (2019) 1–14.
- Y.Y. Petrova, E.V. Bulatova, E.V. Sevast’yanova,
Y.G. Mateyshina, Quercetin-imprinted monolithic polymer,
Mater. Today Proc., 31 (2020) 555–557.
- Y. Sun, Y. Zhang, Z. Ju, L. Niu, Z. Gong, Z. Xu, Molecularly
imprinted polymers fabricated by Pickering emulsion
polymerization for the selective adsorption and separation
of quercetin from Spina Gleditsiae, New J. Chem., 43 (2019)
14747–14755.
- M. Arabi, A. Ostovan, A.R. Bagheri, X. Guo, L. Wang, J. Li,
X. Wang, B. Li, L. Chen, Strategies of molecular imprintingbased
solid-phase extraction prior to chromatographic
analysis, TrAC, Trends Anal. Chem., 128 (2020) 115923,
doi: 10.1016/j.trac.2020.115923.