References

  1. T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M.N. Iqbal, Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment, Environ. Int., 122 (2019) 52–66.
  2. H. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation, J. Chem., 2019 (2019) 1–14.
  3. L. Yang, Q. Ren, K. Zheng, Z. Jiao, X. Ruan, Y. Wang, Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci. Total Environ., 806 (2022) 150646, doi: 10.1016/j.scitotenv.2021.150646.
  4. S. Mishra, R.N. Bharagava, N. More, A. Yadav, S. Zainith, S. Mani, P. Chowdhary, Heavy Metal Contamination: An Alarming Threat to Environment and Human Health, R. Sobti, N. Arora, R. Kothari, Eds., Environmental Biotechnology: For Sustainable Future, Springer, Singapore, 2019, pp. 103–125.
  5. Y. Zhang, B.M Birmann, J. Han, E.L. Giovannucci, F.E. Speizer, M.J. Stampfer, E.S. Schernhammer, Personal use of permanent hair dyes and cancer risk and mortality in US women: prospective cohort study, BMJ, 370 (2020) 1–12.
  6. S. Negahdari, M. Sabaghan, M. Pirhadi, M. Alikord, M. Darvishi, M. Nazer, Potential harmful effects of heavy metals as a toxic and carcinogenic agent in marine food-an overview, Egypt. J. Vet. Sci., 52 (2021) 379–385.
  7. C. Peng, K. Zhang, M. Wang, X. Wan, W. Chen, Estimation of the accumulation rates and health risks of heavy metals in residential soils of three metropolitan cities in China, J. Environ. Sci., 115 (2022) 149–161.
  8. K. Nahar, M. Chowdhury, A. Khair, A. Hossain, A. Rahman, K. Mohiuddin, Heavy metals in handloom-dyeing effluents and their biosorption by agricultural by-products, Environ. Sci. Pollut. Res., 25 (2018) 7954–7967.
  9. S.K. Kahlon, G. Sharma, J. Julka, A. Kumar, S. Sharma, F.J. Stadler, Impact of heavy metals and nanoparticles on aquatic biota, Environ. Chem. Lett., 16 (2018) 919–946.
  10. K. Yunus, M. Zuraidah, A. John, A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia, Ecofeminism Clim. Change, 1 (2020) 21–35.
  11. S. Velusamy, A. Roy, S. Sundaram, T.M. Kumar, A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment, Chem. Rec., 21 (2021) 1570–1610.
  12. A. Singh, D.B. Pal, A. Mohammad, A. Alhazmi, S. Haque, N. Srivastava, V.K. Gupta, Biological remediation technologies for dyes and heavy metals in wastewater treatment: new insight, Bioresour. Technol., 343 (2022) 126154, doi: 10.1016/j. biortech.2021.126154.
  13. J.O. Ighalo, P.S. Yap, K.O. Iwuozor, K. Dulta, F.U. Iwuchukwu, S. Rangabhashiyam, Adsorption of persistent organic pollutants (POPs) from the aqueous environment by nanoadsorbents: a review, Environ. Res., 212 (2022) 113123, doi: 10.1016/j.envres.2022.113123.
  14. U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, K. Pal, O.A. Osibote, H.S. Kusuma, H. Darmokoesoemo, A facile review on the sorption of heavy metals and dyes using bionanocomposites, Adsorpt. Sci. Technol., 2022 (2022) 1–36.
  15. K. Khulbe, T. Matsuura, Removal of heavy metals and pollutants by membrane adsorption techniques, Appl. Water Sci., 8 (2018) 1–30.
  16. A. Elgarahy, K. Elwakeel, S. Mohammad, G. Elshoubaky, A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process, Cleaner Eng. Technol., 4 (2021) 100209, doi: 10.1016/j. clet.2021.100209.
  17. M. Zhang, Z. Zhang, Y. Peng, L. Feng, X. Li, C. Zhao, K. Sarfaraz, Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range, Int. J. Biol. Macromol., 156 (2020) 289–301.
  18. M. Arabi, O. Ostovan, J. Li, X. Wang, Z. Zhang, J. Choo, L. Chen, Molecular imprinting: green perspectives and strategies, Adv. Mater., 33 (2021) 2100543, doi: 10.1002/adma.202100543.
  19. M.M. Moein, Advancements of chiral molecularly imprinted polymers in separation and sensor fields: a review of the last decade, Talanta, 224 (2021) 121794, doi: 10.1016/j. talanta.2020.121794.
  20. M. Janczura, P. Luliński, M. Sobiech, Imprinting technology for effective sorbent fabrication: current state-of-art and future prospects, Materials, 14 (2021) 1850, doi: 10.3390/ma14081850.
  21. E. Turiel, A. Martín-Esteban, Molecularly imprinted polymersbased microextraction techniques, TrAC, Trends Anal. Chem., 118 (2019) 574–586.
  22. M. Guć, G. Schroeder, Molecularly imprinted polymers and magnetic molecularly imprinted polymers for selective determination of estrogens in water by ESI-MS/FAPA-MS, Biomolecules, 10 (2020) 672–692.
  23. M.I. Malik, H. Shaikh, G. Mustafa, M.I. Bhanger, Recent applications of molecularly imprinted polymers in analytical chemistry, Sep. Purif. Rev., 48 (2019) 179–219.
  24. G.T Jayasinghe, A. Moreda-Piñeiro, Molecularly imprinted polymers for dispersive (micro)solid phase extraction: a review, Separations, 8 (2021) 99, doi: 10.3390/separations8070099.
  25. S. Ramanavicius, U. Samukaite-Bubniene, V. Ratautaite, M. Bechelany, A. Ramanavicius, Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications (review), J. Pharm. Biomed. Anal., 215 (2022) 114739, doi: 10.1016/j.jpba.2022.114739.
  26. S. Roshan, A. Mujahid, A. Afzal, I. Nisar, M.N. Ahmad, S.Z. Bajwa, Molecularly imprinted polymer-silica hybrid particles for biomimetic recognition of target drugs, Adv. Polym. Technol., 2019 (2019) 9432412, doi: 10.1155/2019/9432412.
  27. M.D. Ariani, A. Zuhrotun, P. Manesiotis, A.N. Hasanah, Magnetic molecularly imprinted polymers: an update on their use in the separation of active compounds from natural products, Polymers, 14 (2022) 1389, doi: 10.3390/polym14071389.
  28. Q. Ding, Z. Guo, W. Chen, X. Zhu, Q. Liu, M. Fu, Biomass activated carbon–derived imprinted polymer with multiboronic acid sites for selective capture of glycoprotein, J. Colloid Interface Sci., 596 (2021) 225–232.
  29. A.R. Bagheri, N. Aramesh, H.K. Lee, Chitosan- and/or cellulosebased materials in analytical extraction processes: a review, TrAC, Trends Anal. Chem., 157 (2022) 116770, doi: 10.1016/j.trac.2022.116770.
  30. A. Paul, T. Warner, C. John, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, New York, 1998, pp. 13940–13941.
  31. A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, TrAC, Trends Anal. Chem., 50 (2013) 78–84.
  32. P.M. Nowak, R. Wietecha-Posłuszny, J. Pawliszyn, White analytical chemistry: an approach to reconcile the principles of green analytical chemistry and functionality, TrAC, Trends Anal. Chem., 138 (2021) 116223, doi: 10.1016/j.trac.2021.116223.
  33. P.M. Nowak, P. Kościelniak, What color is your method? adaptation of the RGB additive color model to analytical method evaluation, Anal. Chem., 91 (2019) 10343–10352.
  34. A. Martín‐Esteban, Green molecularly imprinted polymers for sustainable sample preparation, J. Sep. Sci., 45 (2022) 233–245.
  35. F. Pena-Pereira, W. Wojnowski, M. Tobiszewski, AGREE— analytical GREEnness metric approach and software, Anal. Chem., 92 (2020) 10076–10082.
  36. K.A. Van, L. Strekowski, L. Patiny, EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters, Beilstein J. Org. Chem., 2 (2006) 1–7.
  37. K. Haupt, P.X.R Medina, B.T.S. Bui, Molecularly imprinted polymers: antibody mimics for bioimaging and therapy, Chem. Rev., 120 (2020) 9554–9582.
  38. P.S. Sharma, Z. Iskierko, A. Pietrzyk-Le, F. D’Souza, W. Kutner, Bioinspired intelligent molecularly imprinted polymers for chemosensing: a mini review, Electrochem. Commun., 50 (2015) 81–87.
  39. A.A. Ensafi, N. Kazemifard, Z.D. Saberi, Chapter 3 – Parameters That Affect Molecular Imprinting Polymers, M.P. Sooraj, A.S. Nair, B. Mathew, S. Thomas. Eds., Molecularly Imprinted Polymer Composites: Synthesis, Characterisation and Applications, Woodhead Publishing Series in Composites Science and Engineering, Elsevier Publishing Group, The Netherlands, 2021, pp. 21–48.
  40. S. Farooq, H. Wu, J. Nie, S. Ahmad, I. Muhammad, R. Khan, A. Asim, Application, advancement and green aspects of magnetic molecularly imprinted polymers in pesticide residue detection, Sci. Total Environ., 804 (2022) 150293, doi: 10.1016/j.scitotenv.2021.150293.
  41. A.N. Hasanah, F.S. Maelaningsih, F. Apriliandi, A. Sabarudin, Synthesis and characterisation of a monolithic imprinted column using a methacrylic acid monomer with porogen propanol for atenolol analysis, J. Anal Methods Chem., 2020 (2020) 3027618, doi: 10.1155/2020/3027618.
  42. E. Kianfar, S. Mafi, Ionic liquids: properties, application, and synthesis, Fine Chem. Eng., 1 (2021) 22–31.
  43. J. Maculewicz, K. Świacka, P. Stepnowski, J. Dołżonek, A. Białk- Bielińska, Ionic liquids as potentially hazardous pollutants: evidences of their presence in the environment and recent analytical developments, J. Hazard. Mater., 437 (2022) 129353, doi: 10.1016/j.jhazmat.2022.129353.
  44. C.W. Cho, T.P.T, Pham, Y. Zhao, S. Stolte, Y.S. Yun, Review of the toxic effects of ionic liquid, Sci. Total Environ., 786 (2021) 147309, doi: 10.1016/j.scitotenv.2021.147309.
  45. X. Wu, J. Du, M. Li, L. Wu, C. Han, F. Su, Recent advances in green reagents for molecularly imprinted polymers, RSC Adv., 8 (2018) 311–327.
  46. S. Ding, Z. Lyu, X. Niu, Y. Zhou, M. Falahati, D. Du, Y. Lin, Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review, Biosens. Bioelectron., 149 (2020) 111830, doi: 10.1016/j.bios.2019.111830.
  47. L. Guo, Q. Deng, G. Fang, W. Gao, S. Wang, Preparation and evaluation of molecularly imprinted ionic liquids polymer as sorbent for on-line solid-phase extraction of chlorsulfuron in environmental water samples, J. Chromatogr. A, 1218 (2011) 6271–6277.
  48. L. Chen, X. Wang, W. Lu, X. Wu, J. Li, Molecular imprinting: perspectives and applications, Chem. Soc. Rev., 45 (2016) 2137–2211.
  49. A. Mueller, A note about crosslinking density in imprinting polymerization, Molecules, 26 (2021) 5139, doi: 10.3390/ molecules26175139.
  50. M. Singh, S. Singh, S.P. Singh, S.S. Patel, Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix, Trends Environ. Anal. Chem., 27 (2020) e00092, doi: 10.1016/j.teac.2020.e00092.
  51. M. Włoch, J. Datta, Chapter 2 – Synthesis and Polymerisation Techniques of Molecularly Imprinted Polymers, In: Comprehensive Analytical Chemistry, Elsevier, Elsevier Publishing Group, The Netherlands, 2019, pp. 17–40.
  52. J. Zhang, M. Wang, P. Liu, X. Zhang, T. Huo, C. Liu, S. Zhao, Z. Chen, Study on synthesis and adsorption properties of glutathione surface molecular imprinting polymer, Pigm. Resin Technol., 50 (2021) 585–594.
  53. Y. Kitayama, K. Yoshikawa, T. Takeuchi, Post-cross-linked molecular imprinting with functional polymers as a universal building block for artificial polymeric receptors, Macromolecules, 50 (2017) 7526–7534.
  54. K. Chen, Y. Zhao, Effects of nano-confinement and conformational mobility on molecular imprinting of crosslinked micelles, Org. Biomol. Chem., 17 (2019) 8611–8617.
  55. A.M. Abass, J.M. Rzaij, A review on: molecularly imprinting polymers by ion selective electrodes for determination drugs, J. Chem. Rev., 2 (2020) 148–156.
  56. A. Azizi, C.S. Bottaro, A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples, J. Chromatogr. A, 1614 (2020) 460603, doi: 10.1016/j.chroma.2019.460603.
  57. N.F.L. Che, A.L. Ahmad, S.C. Low, N.D. Zaulkiflee, Isotherm and electrochemical properties of atrazine sensing using PVC/MIP: effect of porogenic solvent concentration ratio, Membranes, 11 (2021) 657–675.
  58. T. Sajini, B. Mathew, A brief overview of molecularly imprinted polymers: highlighting computational design, nano and photo-responsive imprinting, Talanta Open., 4 (2021) 1–20.
  59. F.A. Cajamarca, C.R.T Tarley, Influence of synthesis parameters and polymerization methods on the selective and adsorptive performance of bio-inspired ion imprinted polymers, Separations, 9 (2022) 266–293.
  60. N. Murdaya, A.L. Triadenda, D. Rahayu, A.N. Hasanah, A review: using multiple templates for molecular imprinted polymer: is it good?, Polymers, 14 (2022) 4441–4463.
  61. H. Liu, P. Jin, F. Zhu, L. Nie, H. Qiu, A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction, TrAC, Trends Anal. Chem., 134 (2021) 116132, doi: 10.1016/j.trac.2020.116132.
  62. K. Booker, C.I. Holdsworth, C.M. Doherty, A.J. Hill, M.C. Bowyer, A. McCluskey, Ionic liquids as porogens for molecularly imprinted polymers: propranolol, a model study, Org. Biomol. Chem., 12 (2014) 7201–7210.
  63. R. Viveiros, S. Rebocho, T. Casimiro, Green strategies for molecularly imprinted polymer development, Polymers, 10 (2018) 1–27.
  64. J.C. Lee, C.R. Kim, H.S. Byun, Synthesis and adsorption properties of carbamazepine imprinted polymer by dispersion polymerization in supercritical carbon dioxide, Korean J. Chem. Eng., 31 (2014) 2266–2273.
  65. C. Unger, P.A. Lieberzeit, Molecularly imprinted thin film surfaces in sensing: chances and challenges, React. Funct. Polym., 161 (2021) 104855, doi: 10.1016/j.reactfunctpolym.2021.104855.
  66. E.T. Kweinor, S. Rathilal, M.O. Amankwa, I.D. Amoah, M.N. Chollom, Molecular Imprinting Technology: A New Approach for Antibacterial Materials, Inamuddin, M.I. Ahamed, R. Prasad, Eds., Advanced Antimicrobial Materials and Applications. Environmental and Microbial Biotechnology, Springer, Singapore, 2021, pp. 393–421.
  67. S. Beyazit, B.B.S. Tse, K. Haupt, C. Gonzato, Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization, Prog. Polym. Sci., 62 (2016) 1–21.
  68. O.I. Parisi, F. Francomano, M. Dattilo, S. Prete, F. Amone, F. Puoci, The evolution of molecular recognition: from antibodies to molecularly imprinted polymers (MIPs) as artificial counterpart, J. Funct. Biomater., 13 (2022) 12–38.
  69. K.F. Pratama, D. Rahayu, A.N. Hasanah, Effect of the molecularly imprinted polymer component ratio on analytical performance, Chem. Pharm. Bull., 68 (2020) 1013–1024.
  70. E. Verheyen, J.P. Schillemans, M. Wijk, M.A. Demeniex, W.E. Hennink, C.F. Nostrum, Challenges for the effective molecular imprinting of proteins, Biomaterials, 32 (2011) 3008–3020.
  71. A.K. Venkataraman, J.R. Clegg, N.A. Peppas, Polymer composition primarily determines the protein recognition characteristics of molecularly imprinted hydrogels, J. Mater. Chem. B, 8 (2020) 7685–7695.
  72. M. Cejner, R. Dobrowolski, Ion-imprinted polymers: synthesis, characterization and applications, Ann. Chem., 70 (2016) 2–12.
  73. Ö. Erdem, Y. Saylan, M. Andaç, A. Denizli, Molecularly imprinted polymers for removal of metal ions: an alternative treatment method, Biomimetics, 3 (2018) 38–53.
  74. G. Sharma, B. Kandasubramanian, Molecularly imprinted polymers for selective recognition and extraction of heavy metal ions and toxic dyes, J. Chem. Eng. Data, 65 (2020) 396–418.
  75. L. Mergola, S. Scorrano, E. Bloise, M. Catalano, G. Vasapollo, R.S. Del, Novel polymeric sorbents based on imprinted Hg(II)- diphenylcarbazone complexes for mercury removal from drinking water, Polym. J., 48 (2016) 73–79.
  76. H. Zhang, L. Ye, K. Mosbach, Non-covalent molecular imprinting with emphasis on its application in separation and drug development, J. Mol. Recognit., 19 (2006) 248–259.
  77. E.K. Reville, E.H. Sylvester, S.J. Benware, S.S. Negi, E.B. Berda, Customizable molecular recognition: advancements in design, synthesis, and application of molecularly imprinted polymers, Polym. Chem., 13 (2022) 3387–3411.
  78. G. Wulff, Enzyme-like catalysis by molecularly imprinted polymers, Chem. Rev., 102 (2002) 1–28.
  79. M. Gao, Y. Gao, G. Chen, X. Huang, X. Xu, J. Lv, J. Wang, D. Xu, G. Liu, Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples, Front. Chem., 8 (2020) 1–20.
  80. X. Wu, Synthetic Strategies for the Generation of Molecularly Imprinted Polymers, Z. Liu, Y. Huang, Y. Yang, Eds., Molecularly Imprinted Polymers as Advanced Drug Delivery Systems, Springer, Singapore, 2021, pp. 27–59.
  81. F. Yemiş, P. Alkan, B. Yenigül, Molecularly imprinted polymers and their synthesis by different methods, Polym. Polym. Compos., 21 (2013) 145–150.
  82. A.G. Mayes, M.J. Whitcombe, Synthetic strategies for the generation of molecularly imprinted organic polymers, Adv. Drug Delivery Rev., 57 (2005) 1742–1778.
  83. M. Resmini, Molecularly imprinted polymers as biomimetic catalysts, Anal. Bioanal. Chem., 402 (2012) 3021–3026.
  84. I. Bogdan-Cezar, B.E. Andreea, O. Luminița, B. Ede, Metal– Ligand Interactions in Molecular Imprinting, C. Saravanan, B. Biswas, Ed., Ligand, IntechOpen, 2018, pp. 1–18.
  85. E. Tamahkar, A. Denizli, Metal ion coordination interactions for biomolecule recognition: a review, Hittite J. Sci. Eng., 1 (2015) 26–31.
  86. H. Hu, J. Xue, X. Wen, W. Li, C. Zhang, L. Yang, Y. Xu, G. Zhao, Sugar–metal ion interactions: the complicated coordination structures of cesium ion with D-ribose and myo-inositol, Inorg. Chem., 52 (2013) 13132–13145.
  87. C.C. Villa, L.T. Sánchez, G.A. Valencia, S. Ahmed, T.J. Gutiérrez, Molecularly imprinted polymers for food applications: a review, Trends Food Sci. Technol., 111 (2021) 642–669.
  88. L. Wang, K. Zhi, Y. Zhang, Y. Liu, L. Zhang, A. Yasin, Q. Lin, Molecularly imprinted polymers for gossypol via sol–gel, bulk, and surface layer imprinting—a comparative study, Polymers, 11 (2019) 602–620.
  89. J. Fu, L. Chen, J. Li, Z. Zhang, Current status and challenges of ion imprinting, J. Mater. Chem. A, 3 (2015) 13598–13627.
  90. G. Ertürk, B. Mattiasson, Molecular imprinting techniques used for the preparation of biosensors, Sensors, 17 (2017) 288–305.
  91. G. Razym, M. Bakhshpour, H. Yavuz, Ç. Kip, A. Tuncel, A. Denizli, Surface-imprinted silica particles for Concanavalin A purification from Canavalia ensiformis, J. Chromatogr. B, 1136 (2020) 121852, doi: 10.1016/j.jchromb.2019.121852.
  92. M. Díaz-Álvarez, A. Martín-Esteban, Molecularly imprinted polymer-quantum dot materials in optical sensors: an overview of their synthesis and applications, Biosensors, 11 (2021) 79–97.
  93. R.A. Fonseca, L.N.C Dasilva, G.N. Matos, I.F. Ierick, T.L. Ferreira TL, Magnetic MIPs: Synthesis and Applications, A. Martín- Esteban, Ed., Molecularly Imprinted Polymers. Methods in Molecular Biology, Vol. 2359, Humana, New York, NY, 2021, pp. 85–96.
  94. L. Xu, Y.A. Huang, Q.J. Zhu, C. Ye, Chitosan in molecularlyimprinted polymers: current and future prospects, Int. J. Mol. Sci., 16 (2015) 18328–18347.
  95. S.M.E. Nilsson, S. Suriyanarayanan, S. Kathiravan, J. Yli- Kauhaluoma, T. Kotiaho, Enantioselective hyperporous molecularly imprinted thin film polymers, RSC. Adv., 9 (2019) 33653–33656.
  96. M. Wei, Y. Gao, X. Li, M.J. Serpe, Stimuli-responsive polymers and their applications, Polym. Chem., 8 (2017) 127–143.
  97. S. Aslıyüce, N. Idil, B. Mattiasson, Upgrading of bio-separation and bioanalysis using synthetic polymers: molecularly imprinted polymers (MIPs), cryogels, stimuli-responsive polymers, Eng. Life Sci., 22 (2022) 204–216.
  98. H. Musarurwa, N.T. Tawanda, Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices, Microchem. J., 181 (2022) 107750, doi: 10.1016/j.microc.2022.107750.
  99. Y. Toyoshima, A. Kawamura, Y. Takashima, T. Miyata, Design of molecularly imprinted hydrogels with thermoresponsive drug binding sites, J. Mater. Chem. B, 10 (2022) 6644–6654.
  100. O. Ofoegbu, D.C. Ike, H. Fouad, R.S. Srichana, I. Nicholls, Molecularly imprinted chitosan-based thin films with selectivity for nicotine derivatives for application as a biosensor and filter, Polymers, 13 (2021) 3363–3382.
  101. F. Lanza, A.J. Hall, B. Sellergren, A. Bereczki, G. Horvai, S. Bayoudh, D.C. Sherrington, Development of a semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional monomers for phenytoin and nifedipine, Anal. Chim. Acta, 435 (2001) 91–106.
  102. A.N. Hasanah, N. Safitri, A. Zulfa, N. Neli, D. Rahayu, Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials, Molecules, 26 (2021) 5612–5636.
  103. B. Sellergren, C. Dauwe, T. Schneider, Pressure-induced binding sites in molecularly imprinted network polymers, Macromolecules, 30 (1997) 2454–2459.
  104. M. Chiarello, L. Anfossi, S. Cavalera, F. Nardo, F. Artusio, C Baggiani, Effect of polymerization time on the binding properties of ciprofloxacin-imprinted nanoMIPs prepared by solid-phase synthesis, Polymers, 13 (2021) 2656–2679.
  105. E.V. Piletska, A.R. Guerreiro, M.J. Whitcombe, S.A. Piletsky, Influence of the polymerization conditions on the performance of molecularly imprinted polymers, Macromolecules, 42 (2009) 4921–4928.
  106. C. Branger, W. Meouche, A. Margaillan, Recent advances on ion-imprinted polymers, React. Funct. Polym., 73 (2013) 859–875.
  107. M. Caldara, J. Kulpa, J.W. Lowdon, T.J. Cleij, H. Diliën, K. Eersels, Recent advances in molecularly imprinted polymers for glucose monitoring: from fundamental research to commercial application, Chemosensors, 11 (2023) 32–56.
  108. A. Planchart, A. Green, C. Hoyo, C.J. Mattingly, Heavy metal exposure and metabolic syndrome: evidence from human and model system studies, Curr. Environ. Health Rep., 5 (2018) 110–124.
  109. Z, Fu, S. Xi, The effects of heavy metals on human metabolism, Toxicol. Mech. Methods, 30 (2020) 167–176.
  110. S. Rajendran, K.S. Khoo, T.K. Hoang, H.S. Ng, C Karaman, Y. Orooji, P.L. Show, A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils, Chemosphere, 287 (2022) 132369, doi: 10.1016/j.chemosphere.2021.132369.
  111. M.M. Uddin, M.C.M Zakeel, J.S. Zavahir, I. Jahan, Heavy metal accumulation in rice and aquatic plants used as human food: a general review, Toxics, 9 (2021) 1–19.
  112. W.C. Prozialeck, J.R. Edwards, Mechanisms of cadmiuminduced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions, J. Pharmacol. Exp. Ther., 343 (2012) 2–12.
  113. G. Genchi, M.S. Sinicropi, G. Lauria, A. Carocci, A. Catalano, The effects of cadmium toxicity, Int. J. Environ. Res. Public Health, 17 (2020) 3782–3806.
  114. Q. Cai, M.L. Long, M. Zhu, Q.Z. Zhou, L. Zhang, J. Liu, Food chain transfer of cadmium and lead to cattle in a lead– zinc smelter in Guizhou, China, Environ. Pollut., 157 (2009) 3078–3082.
  115. G. Han, J. Wang, H. Sun, B. Liu, Y. Huang, A critical review on the removal and recovery of hazardous Cd from Cd-containing secondary resources in Cu-Pb-Zn smelting processes, Metals, 12 (2022) 1846–1870.
  116. M. Rafati-Rahimzadeh, S. Kazemi, A. Moghadamnia, Cadmium toxicity and treatment: an update, Caspian J. Int. Med., 8 (2017) 135–145.
  117. A.S. Caio, G. Cleber, A.C. Fábio, A. Valfredo, C.M. Heloysa, Application of a novel ion-imprinted polymer to the separation of traces of CDII ions in natural water: optimization by Box–Behnken design, J. Braz. Chem. Soc., 30 (2019) 873–881.
  118. H. Wang, Y. Lin, Y. Li, A. Dolgormaa, H. Fang, L. Guo, J. Huang, J. Yang, A novel magnetic Cd(II) ion-imprinted polymer as a selective sorbent for the removal of cadmium ions from aqueous solution, J. Inorg. Organomet. Polym. Mater., 29 (2019) 1874–1885.
  119. X. Xu, M. Wang, Q. Wu, Z. Xu, X. Tian, Synthesis and application of novel magnetic ion-imprinted polymers for selective solid phase extraction of cadmium(II), Polymers, 9 (2017) 360–381.
  120. S. Guo, F. Zhang, D. Li, P. Jiao, Highly efficient and selective removal of cadmium from aqueous solutions based on magnetic graphitic carbon nitride materials with molecularly imprinted polymers, J. Mol. Struct., 1221 (2020) 1–11.
  121. C. Xie, S. Wei, D. Chen, W. Lan, Z. Yan, Z. Wang, Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd(II) adsorption and detection, RSC Adv., 9 (2019) 23474–23483.
  122. D. Rahangdale, A. Kumar, G. Archana, R.S. Dhodapkar, Ion cum molecularly dual imprinted polymer for simultaneous removal of cadmium and salicylic acid, J. Mol. Recognit., 31 (2018) 1–14.
  123. K.T. Biswas, M.M Yusoff, S.M. Sarjadi, B. Musta, M.L. Rahman, Ion-imprinted polymer for selective separation of cobalt, cadmium and lead ions from aqueous media, Sep. Sci. Technol., 56 (2021) 671–680.
  124. F. Beckers, J. Rinklebe, Cycling of mercury in the environment: Sources, fate, and human health implications: a review, Crit. Rev. Env. Sci. Technol., 47 (2017) 693–794.
  125. H.C. Chuang, H.T. Huang, B.Y. Chen, Z.H. Lee Y.J. Lin, Effect of methylmercury exposure on bioaccumulation and nonspecific immune responses in hybrid grouper Epinephelus fuscoguttatus × Epinephelus lanceolatus, Animals, 12 (2022) 147–161.
  126. J.H. Lin, S.J. Chen, W.Y. Chu, C.J. Yu, C.F. Chen, The detection of Mercury(II) ions using fluorescent gold nanoclusters on a portable paper-based device, Chem. Eng. J., 430 (2022) 133070, doi: 10.1016/j.cej.2021.133070.
  127. W.F. Fitzgerald, C.H. Lamborg, Geochemistry of Mercury in the Environment, H.D. Holland, K. Karl, Treatise on Geochemistry, Pergamon, 2007, pp. 1–47.
  128. N. Pirrone, S. Cinnirella, X. Feng, R.B. Finkelman, J. Leaner, R. Mason, G.B. Stracher, D.G. Streets, Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys., 10 (2010) 5951–5964.
  129. N.A.S. Khairi, N.A. Yusof, A.H. Abdullah, F. Mohammad, Removal of toxic mercury from petroleum oil by newly synthesized molecularly-imprinted polymer, Int. J. Mol. Sci., 16 (2015) 10562–10577.
  130. D.N.Z. Basir, A. Muhammad, B. Muhammad, The synthesis of imprinted polymer sorbent for the removal of mercury ions, Songklanakarin J. Sci. Technol., 42 (2020) 1135–1141.
  131. T. Velempini, K. Pillay, X.Y. Mbianda, O.A. Arotiba, Carboxymethyl cellulose thiol-imprinted polymers: synthesis, characterization and selective Hg(II) adsorption, J. Environ. Sci., 79 (2019) 280–296.
  132. F. Esmali, Y. Mansourpanah, K. Farhadi, S. Amani, A. Rasoulifard, M. Ulbricht, Fabrication of a novel and highly selective ion-imprinted PES-based porous adsorber membrane for the removal of mercury(II) from water, Sep. Purif. Technol., 250 (2020) 117183, doi: 10.1016/j.seppur.2020.117183.
  133. A.A. Keller, A.S. Adeleye, L. Zhao, G.N. Cherr, J. Hong, H.A. Godwin, S. Hanna, Comparative environmental fate and toxicity of copper nanomaterials, NanoImpact, 7 (2017) 28–40.
  134. S.M. Gosavi, S.D. Tapkir, P. Kumkar, C.R. Verma, S.S. Kharat, Act now before its too late: copper exposure drives chemo-ecology of predator-prey dynamics of freshwater common spiny loach, Lepidocephalichthys thermalis (Valenciennes, 1846), Environ. Res., 186 (2020) 109509, doi: 10.1016/j.envres.2020.109509.
  135. C.K. Kwan, E. Sanford, J. Long, Copper pollution increases the relative importance of predation risk in an aquatic food web, PLoS One, 10 (2015) e0133329, doi: 10.1371/journal.pone.0133329.
  136. A.A. Taylor, J.S. Tsuji, M.E. McArdle, W.L. Goodfellow, Recommended reference values for risk assessment of oral exposure to copper, Risk Anal., 1 (2022) 1–8.
  137. W. Liu, Z. An, L. Qin, M. Wang, X. Liu, Y. Yang, Construction of a novel ion imprinted film to remove low concentration Cu2+ from aqueous solution, Chem. Eng. J., 411 (2021) 1–9.
  138. Y. Sun, Y. Gu, P. Zhang, Adsorption properties and recognition mechanisms of a novel surface imprinted polymer for selective removal of Cu(II)-citrate complexes, J. Hazard. Mater., 424 (2022) 127735, doi: 10.1016/j.jhazmat.2021.127735.
  139. L. Wang, J. Li, J. Wang, X. Guo, X. Wang, J. Choo, L. Chen, Green multi-functional monomer based ion imprinted polymers for selective removal of copper ions from aqueous solution, J. Colloid Interface Sci., 541 (2019) 376–386.
  140. P. Wang, X. Tang, L. Hu, Y. Yin, S. Chen, H. Wang, J. Wu, Synthesis of an ion-imprinted degreasing cotton for the selective removal of Cu2+ from aqueous solutions, ChemistrySelect, 4 (2019) 14169–14174.
  141. S. Rais, A. Islam, I. Ahmad, S. Kumar, A. Chauhan, H. Javed, Preparation of a new magnetic ion-imprinted polymer and optimization using Box–Behnken design for selective removal and determination of Cu(II) in food and wastewater samples, Food Chem., 334 (2021) 1–9.
  142. A. Chaipuang, C. Phungpanya, C. Thongpoon, K. Watlaiad, P. Inkaew, T. Machan, O. Suwantong, Effect of ethylene diamine tetra-acetic acid and functional monomers on the structure and adsorption properties of copper(II) ionimprinted polymers, Polym. Adv. Technol., 32 (2021) 3000–3007.
  143. W. Liu, L. Qin, Z. An, L. Chen, X. Liu, Y. Yang, B. Xu, Thermoresponsive ion imprinted polymer on the surface of magnetic carbon microspheres for identification and removal of lowconcentrations of Cu2+, Environ. Chem., 15 (2018) 306–316.
  144. S. Kumar, E. Alveroğlu, A. Balouch, F.N. Talpur, M.S. Jagirani, A.M. Mahar, D. Mal, S. Lal, Fabrication of chromiumimprinted polymer: a real magneto-selective sorbent for the removal of Cr(VI) ions in real water samples, New J. Chem., 44 (2020) 18668–18678.
  145. R. Huang, X. Ma, X. Li, L. Guo, X. Xie, M. Zhang, J. Li, A novel ion-imprinted polymer based on graphene oxidemesoporous silica nanosheet for fast and efficient removal of chromium(VI) from aqueous solution, J. Colloid Interface Sci., 514 (2018) 544–553.
  146. H.R. Yang, C. Yang, S.S. Li, G.L. Song, Q.D. An, Z.Y. Xiao, Site-imprinted hollow composites with integrated functions for ultra-efficient capture of hexavalent chromium from water, Sep. Purif. Technol., 284 (2022) 120240, doi: 10.1016/j.seppur.2021.120240.
  147. Y.A. Neolaka, H.S. Kusuma, Synthesis and characterization of natural zeolite with ordered ion imprinted polymer structures (IIP@AFINZ) for selective Cr(VI) adsorption from aqueous solution, Moroccan J. Chem., 7 (2019) 194–210.
  148. N.H. Elsayed, M. Monier, M.A. Albalawi, A.S. Alhawiti, Preparation of chromium(III) ion-imprinted polymer based on azo dye functionalized chitosan, Carbohydr. Polym., 284 (2022) 119139, doi: 10.1016/j.carbpol.2022.119139.
  149. Y. Liu, X. Meng, Z. Liu, M. Meng, F. Jiang, M. Luo, L. Ni, J. Qiu, G. Zhong, Preparation of a two-dimensional ion-imprinted polymer based on a graphene oxide/SiO2 composite for the selective adsorption of nickel ions, Langmuir, 31 (2015) 8841–8851.
  150. S. Kumar, A. Balouch, E. Alveroğlu, M.S. Jagirani, M.A. Mughal, D. Mal, Fabrication of nickel-tagged magnetic imprinted polymeric network for the selective extraction of Ni(II) from the real aqueous samples, Environ. Sci. Pollut. Res. Int., 28 (2021) 40022–40034.
  151. X. Ao, H. Guan, Preparation of Pb(II) ion-imprinted polymers and their application in selective removal from wastewater, Adsorpt. Sci. Technol., 36 (2018) 774–787.
  152. Z. Zhang, X. Zhang, D. Niu, Y. Li, J. Shi, Highly efficient and selective removal of trace lead from aqueous solutions by hollow mesoporous silica loaded with molecularly imprinted polymers, J. Hazard. Mater., 328 (2017) 160–169.
  153. A. Kuanar, S.K. Kabi, M. Rath, N.K. Dhal, R. Bhuyan, S. Das, D. Kar, A comparative review on bioremediation of chromium by bacterial, fungal, algal and microbial consortia, Geomicrobiol. J., 39 (2022) 515–530.
  154. F. Chen, S. Guo, Y. Wang, L. Ma, B. Li, Z. Song, L. Huang, W. Zhang, Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge, Front. Environ. Sci. Eng., 16 (2021) 57–65.
  155. M. Babapour, M.D. Hadi, M. Alimohammadi, M. Salari, L. Rasuli, N.M. Mubarak, N.K. Ahmad, Adsorption of Cr(VI) from aqueous solution using mesoporous metalorganic framework-5 functionalized with the amino acids: characterization, optimization, linear and nonlinear kinetic models, J. Mol. Liq., 345 (2022) 117835, doi: 10.1016/j.molliq.2021. 117835.
  156. S. Mehdipour-Ataei, E. Aram, Mesoporous carbonbased materials: a review of synthesis, modification, and applications, Catalysts, 13 (2023) 2–21.
  157. Y. Sheth, S. Dharaskar, M. Khalid, S. Sonawane, An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: a review, Sustainable Energy Technol. Assess., 43 (2021) 100951, doi: 10.1016/j.seta.2020.100951.
  158. R. Kaveh, M. Bagherzadeh, Simultaneous removal of mercury ions and cationic and anionic dyes from aqueous solution using epichlorohydrin cross-linked chitosan@magnetic Fe3O4/activated carbon nanocomposite as an adsorbent, Diamond Relat. Mater., 124 (2022) 108923, doi: 10.1016/j.diamond.2022.108923.
  159. G. Genchi, A. Carocci, G. Lauria, M.S. Sinicropi, A. Catalano, Nickel: human health and environmental toxicology, Int. J. Environ. Res. Public Health, 17 (2020) 679–691.
  160. A. Kumar, D.K. Jigyasu, A. Kumar, G. Subrahmanyam, R. Mondal, A.A. Shabnam, S.K. Malyan, D.K. Gupta, Nickel in terrestrial biota: comprehensive review on contamination, toxicity, tolerance and its remediation approaches, Chemosphere, 275 (2021) 129996, doi: 10.1016/j.chemosphere.2021.129996.
  161. H. He, Q. Gan, C. Feng, Preparation and application of Ni(II) ion-imprinted silica gel polymer for selective separation of Ni(II) from aqueous solution, RSC Adv., 7 (2017) 15102–15111.
  162. A. Kumar, A. Balouch, A.A. Pathan, Synthesis, adsorption and analytical applicability of Ni-imprinted polymer for selective adsorption of Ni2+ ions from the aqueous environment, Polym. Test., 77 (2019) 105871, doi: 10.1016/j.polymertesting.2019.04.018.
  163. H. Faghihian, Z. Adibmehr, Comparative performance of novel magnetic ion-imprinted adsorbents employed for Cd2+, Cu2+ and Ni2+ removal from aqueous solutions, Environ. Sci. Pollut. Res., 25 (2018) 15068–15079.
  164. N. Guo, S.J. Su, B. Liao, W.Y. Sun, Preparation and properties of a novel macro porous Ni2+-imprinted chitosan foam adsorbents for adsorption of nickel ions from aqueous solution, Carbohydr. Polym., 165 (2017) 376–383.
  165. W. Liu, M. Zhang, X. Liu, H. Zhang, J. Jiao, H. Zhu, Z. Zhou, Z. Ren, Preparation of surface ion-imprinted materials based on modified chitosan for highly selective recognition and adsorption of nickel ions in aqueous solutions, Ind. Eng. Chem. Res., 59 (2020) 6033–6042.
  166. R. Nag, E. Cummins, Human health risk assessment of lead (Pb) through the environmental-food pathway, Sci. Total Environ., 810 (2020) 151168, doi: 10.1016/j.scitotenv.2021.151168.
  167. M.M. Ali, M.S. Islam, M.S. Bhuyan, M.Z. Rahman, M.M. Rahman, Toxic metal pollution and ecological risk assessment in water and sediment at ship breaking sites in the Bay of Bengal Coast, Bangladesh, Mar. Pollut. Bull., 175 (2022) 113274, doi: 10.1016/j.marpolbul.2021.113274.
  168. A. Kumar, A.K. Chaturvedi, A.A. Shabnam, G. Subrahmanyam, D.K. Gupta, S.S. Kumar, Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches, Int. J. Environ. Res. Public Health, 17 (2020) 2179–2192.
  169. Y. Liu, Z. Liu, J. Gao, J. Dai, J. Han, J. Xie, Y. Yan, Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique, J. Hazard. Mater., 186 (2011) 197–205.
  170. C. Esen, M. Andac, N. Bereli, R. Say, E. Henden, A. Denizli, Highly selective ion-imprinted particles for solid-phase extraction of Pb2+ ions, Mater. Sci. Eng. C, 29 (2009) 2464–2470.
  171. C.R. Tarley, F.N. Andrade, H.D. Santana, L.A. Beijo, M.G. Segatelli, Ion-imprinted polyvinylimidazole-silica hybrid copolymer for selective extraction of Pb(II): characterization and metal adsorption kinetic and thermodynamic studies, React. Funct. Polym., 72 (2012) 83–91.
  172. C. Li, J. Gao, J. Pan, Z. Zhang, Y. Yan, Synthesis, characterization, and adsorption performance of Pb(II)-imprinted polymer in nano-TiO2 matrix, J. Environ. Sci., 21 (2009) 1722–1729.
  173. X. Cai, J. Li, Z. Zhang, F. Yang, R. Dong, L. Chen, Novel Pb2+ ion imprinted polymers based on ionic interaction via synergy of dual functional monomers for selective solidphase extraction of Pb2+ in water samples, ACS Appl. Mater. Interfaces, 6 (2014) 305–313.
  174. V. Chauhan, P. Gautam, S.S. Kanwar, Chapter 20 – Azo Dyes: A Notorious Class of Water Pollutant, and Role of Enzymes to Decolorize and Degrade Them, M.P. Shah, S. Rodriguez- Couto, R.T. Kapoor, Eds., Development in Wastewater Treatment Research and Processes, Innovative Microbe- Based Applications for Removal of Chemicals and Metals in Wastewater Treatment Plants, Elsevier, Elsevier Publishing Group, The Netherlands, 2022, pp. 433–448.
  175. A.R. Bagheri, N. Aramesh, A.A. Khan, I. Gul, M. Bilal, Molecularly imprinted polymers-based adsorption and photocatalytic approaches for mitigation of environmentallyhazardous pollutants – a review, J. Environ. Chem. Eng., 9 (2021) 104879, doi: 10.1016/j.jece.2020.104879.
  176. A. Khan, A. Roy, S. Bhasin, T.B. Emran, A. Khusro, A. Eftekhari, H. Rokni, F. Karimi, Nanomaterials: an alternative source for biodegradation of toxic dyes, Food Chem. Toxicol., 164 (2022) 112996, doi: 10.1016/j.fct.2022.112996.
  177. M.M. Hassan, C.M. Carr, A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents, Chemosphere, 209 (2018) 201–219.
  178. R. Shoukat, S.J. Khan, Y. Jamal, Hybrid anaerobic-aerobic biological treatment for real textile wastewater, J. Water Process Eng., 29 (2019) 100804, doi: 10.1016/j.jwpe.2019.100804.
  179. M. Hasanpour, M. Hatami, Photocatalytic performance of aerogels for organic dyes removal from wastewaters: review study, J. Mol. Liq., 309 (2020) 113094, doi: 10.1016/j.molliq.2020.113094.
  180. A. Tiwari, M. Joshi, N. Salvi, D. Gupta, S. Gandhi, R.K. Tekade, Chapter 21 – Toxicity of Pharmaceutical Azo Dyes, R.K. Tekade, Ed., Pharmacokinetics and Toxicokinetic Considerations, Volume 2 in Advances in Pharmaceutical Product Development and Research, Academic Press, Elsevier Publishing Group, The Netherlands, 2022, pp. 569–603.
  181. K. Liu, Y. Yang, F. Sun, Y. Liu, M. Tang, J. Chen, Rapid degradation of Congo red wastewater by Rhodopseudomonas palustris intimately coupled carbon nanotube – silver modified titanium dioxide photocatalytic composite with sodium alginate, Chemosphere, 299 (2022) 134417, doi: 10.1016/j.chemosphere.2022.134417.
  182. N. Asses, L. Ayed, N. Hkiri, M. Hamdi, Congo red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway, Biomed Res. Int., 2018 (2018) 1–9.
  183. F. Liu, S. Zhang, G. Wang, J. Zhao, Z. Guo, A novel bifunctional molecularly imprinted polymer for determination of Congo red in food, RSC Adv., 5 (2015) 22811–22817.
  184. S.R. Shafqat, S.A. Bhawani, S. Bakhtiar, M.N.M. Ibrahim, Synthesis of molecularly imprinted polymer for removal of Congo red, BMC Chem., 14 (2020) 27–38.
  185. D. Yuan, D. Fu, C. Wang, Selective removal of Congo red from wastewater using molecularly imprinted polymer, Sep. Sci. Technol., 56 (2021) 233–241.
  186. P.K. Gillman, CNS toxicity involving methylene blue: the exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity, J. Psychopharmacol., 25 (2011) 429–436.
  187. I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, L.A. Shah, Review on Methylene blue: its properties, uses, toxicity and photodegradation, Water, 14 (2022) 242–261.
  188. Y. Sun, L. Bai, C. Han, X. Lv, X. Sun, T. Wang, Hybrid amino-functionalized TiO2/sodium lignosulfonate surface molecularly imprinted polymer for effective scavenging of methylene blue from wastewater, J. Cleaner Prod., 337 (2022) 130457, doi: 10.1016/j.jclepro.2022.130457.
  189. H. Xu, P. Zhang, S.Y. Zhou, Q. Jia, Fullerene functionalized magnetic molecularly imprinted polymer: synthesis, characterization and application for efficient adsorption of Methylene blue, Chin. J. Anal. Chem., 48 (2020) e20107–e20113.
  190. R. Zhao, X. Li, B. Sun, Y. Li, C. Wang, Preparation of molecularly imprinted sericin/poly(vinyl alcohol) electrospun fibers for selective removal of methylene blue, Chem. Res. Chin. Univ., 33 (2017) 986–994.
  191. D.R. Sulistina, S. Martini, The effect of Rhodamine B on the cerebellum and brainstem tissue of Rattus norvegicus, J. Public Health Res., 9 (2020) 1812–1832.
  192. A.A. Al-Gheethi, Q.M. Azhar, A.A. Yusuf, A.K. Al-Buriahi, M.M. Al-shaibani, Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: a review, Chemosphere, 287 (2022) 132080, doi: 10.1016/j.chemosphere.2021.132080.
  193. S. Jahankhah, M.M. Sabzehmeidani, M. Ghaedi, K. Dashtian, Hydrophilic magnetic molecularly imprinted resin in PVDF membrane for efficient selective removal of dye, J. Environ. Manage., 300 (2021) 113707, doi: 10.1016/j.jenvman.2021.113707.
  194. M. Arabi, A. Ostovan, A.R. Bagheri, X. Guo, J. Li, J. Ma, L. Chen, Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: a green approach and hazardous waste elimination, Talanta, 215 (2020) 120933, doi: 10.1016/j.talanta.2020.120933.
  195. H. Zhai, L. Huang, Z. Chen, Z. Su, K. Yuan, G. Liang, Y. Pan, Chip-based molecularly imprinted monolithic capillary array columns coated GO/SiO2 for selective extraction and sensitive determination of Rhodamine B in chili powder, Food Chem., 214 (2017) 664–669.
  196. A.R. Bagheri, M. Ghaedi, Synthesis of chitosan based molecularly imprinted polymer for pipette-tip solid phase extraction of Rhodamine B from chili powder samples, Int. J. Biol. Macromol., 139 (2019) 40–48.
  197. F. Vargas, P. Romecín, A.I. García-Guillén, R.Wangesteen, P. Vargas-Tendero, J. García-Estañ, Flavonoids in kidney health and disease, Front. Physiol., 9 (2018) 1–12.
  198. Z. Dogan, A. Cetin, E. Elibol, N. Vardi, Y. Turkoz, Effects of ciprofloxacin and quercetin on fetal brain development: a biochemical and histopathological study, J. Maternal-Fetal Neonatal Med., 32 (2019) 1783–1791.
  199. S.S. Hassan, H.A. Shafy, M.S. Mansour, H.E. Sayour, Quercetin recovery from onion solid waste via solid-phase extraction using molecularly imprinted polymer nanoparticles, Int. J. Food Eng., 15 (2019) 1–14.
  200. Y.Y. Petrova, E.V. Bulatova, E.V. Sevast’yanova, Y.G. Mateyshina, Quercetin-imprinted monolithic polymer, Mater. Today Proc., 31 (2020) 555–557.
  201. Y. Sun, Y. Zhang, Z. Ju, L. Niu, Z. Gong, Z. Xu, Molecularly imprinted polymers fabricated by Pickering emulsion polymerization for the selective adsorption and separation of quercetin from Spina Gleditsiae, New J. Chem., 43 (2019) 14747–14755.
  202. M. Arabi, A. Ostovan, A.R. Bagheri, X. Guo, L. Wang, J. Li, X. Wang, B. Li, L. Chen, Strategies of molecular imprintingbased solid-phase extraction prior to chromatographic analysis, TrAC, Trends Anal. Chem., 128 (2020) 115923, doi: 10.1016/j.trac.2020.115923.