References

  1. X. Li, J. Li, W. Shi, J. Bao, X. Yang, A Fenton-like nanocatalyst based on easily separated magnetic nanorings for oxidation and degradation of dye pollutant, Materials, 13 (2020) 332, doi: 10.3390/ma13020332.
  2. M. Rastgordani, J. Zolgharnein, V. Mahdavi, Derivative spectrophotometry and multivariate optimization for simultaneous removal of Titan yellow and Bromophenol blue dyes using polyaniline@SiO2 nanocomposite, Microchem. J., 155 (2020) 104717, doi: 10.1016/j.microc.2020.104717.
  3. P.R. de Souza, T.M. do Carmo Ribeiro, A.P. Lôbo, M.S. Tokumoto, R.M. de Jesus, I.P. Lôbo, Removal of bromophenol blue anionic dye from water using a modified exuviae of Hermetia illucens larvae as biosorbent, Environ. Monit. Assess., 192 (2020) 197, doi: 10.1007/s10661-020-8110-z.
  4. A. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bedia, C. Belver, Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling, Chem. Eng. J., 404 (2021) 126601, doi: 10.1016/j.cej.2020.126601.
  5. M. Arbabi, N. Golshani, Removal of copper ions Cu(II) from industrial wastewater: a review of removal methods, Int. J. Epidemiol. Res., 3 (2016) 283–293.
  6. P. Senthil Kumar, G. Janet Joshiba, C.C. Femina, P. Varshini, S. Priyadharshini, M.S. Arun Karthick, R. Jothirani,
    A critical review on recent developments in the low-cost adsorption of dyes from wastewater, Desal. Water Treat., 172 (2019) 395–416.
  7. N. Suhaimi, M.R.R. Kooh, C.M. Lim, C.-T. Chou Chao, Y.-F. Chou Chau, A.H. Mahadi, H.-P. Chiang, N.H. Haji Hassan, R. Thotagamuge, The use of Gigantochloa bambooderived biochar for the removal of methylene blue from aqueous solution, Adsorpt. Sci. Technol., 2022 (2022) 8245797, doi: 10.1155/2022/8245797.
  8. M.R.R. Kooh, R. Thotagamuge, Y.-F.C. Chau, A.H. Mahadi, C.M. Lim, Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue, J. Taiwan Inst. Chem. Eng., 132 (2022) 104134, doi: 10.1016/j. jtice.2021.11.001.
  9. A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Adsorption of dyes using different types of clay: a review, Appl. Water Sci., 7 (2017) 543–568.
  10. K. Dua, S. Nammi, D. Chang, D.K. Chellappan, G. Gupta, T. Collet, Medicinal Plants for Lung Diseases:
    A Pharmacological and Immunological Perspective, Springer, Singapore, 2021.
  11. O.U. Rao, M.C. Eswaraiah, M.C. Prabhakar, D. Santhikrupa, Hepatoprotective activity of aqueous extract from inflorescence and pollen grains of Casuarina equisetifolia against paracetamol induced hepatotoxicity in wistr rats, Int. J. Pharm. Sci. Res., 9 (2018) 743–747.
  12. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution, Alexandria Eng. J., 54 (2015) 1253–1263.
  13. M. Abdullah, A.N.F. Azmi, M.Z.M. Azahar, F.N.M. Amri, K.A. Kadiran, D. Che Lat, H. Abu Kasim, A.H. Khalid, Application of Casuarina equisetifolia needle for the removal of heavy and light oil waste, AIP Conf. Proc., 2339 (2021) 020156, doi: 10.1063/5.0044212.
  14. M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, C.A. Ng, The removal of rhodamine B dye from aqueous solution using Casuarina equisetifolia needles as adsorbent, Cogent Environ. Sci., 2 (2016) 1140553, doi: 10.1080/23311843.2016.1140553.
  15. S. Mohan, K. Sumitha, Removal of Cu(II) by adsorption using Casuarina equisetifolia bark, Environ. Eng. Sci., 25 (2008) 497–506.
  16. C. Hou, D. Zhao, S. Zhang, Y. Wang, Highly selective adsorption of Hg(II) by the monodisperse magnetic functional chitosan nano-biosorbent, Prog. Colloid Polym. Sci., 296 (2018) 547–555.
  17. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Removal of Methyl violet 2B from aqueous solution using Casuarina equisetifolia needle, Int. Scholarly Sci. Not., 2013 (2013) 619819, doi: 10.1155/2013/619819.
  18. R. Khan Rao, A. Khatoon, Aluminate treated Casuarina equisetifolia leaves as potential adsorbent for sequestering Cu(II), Pb(II) and Ni(II) from aqueous solution, J. Cleaner Prod., 165 (2017) 1280–1295.
  19. K. Jafari, M. Heidari, O. Rahmanian, Wastewater treatment for Amoxicillin removal using magnetic adsorbent synthesized by ultrasound process, Ultrason. Sonochem., 45 (2018) 248–256.
  20. T.D. Çi̇ftçi̇, Adsorption of Cu(II) on three adsorbents, Fe3O4/ Ni/Nix B nanocomposite, carob (textit-Ceratonia siliqua), and grape seeds: a comparative study, Turk. J. Chem., 41 (2017) 760–772.
  21. V.P. Singh, Entropy Theory in Hydraulic Engineering: An Introduction, American Society of Civil Engineers, USA, 2014.
  22. K. Oukebdane, I.L. Necer, M.A. Didi, Binary comparative study adsorption of anionic and cationic azo-dyes on Fe3O4-bentonite magnetic nanocomposite: kinetics, equilibrium, mechanism and thermodynamic study, Silicon, 14 (2022) 9555–9568.
  23. M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, L.H. Lim, C.M. Chan, Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies, Appl. Water Sci., 8 (2018) 1–10.
  24. C. Djelloul, O. Hamdaoui, Removal of cationic dye from aqueous solution using melon peel as nonconventional lowcost sorbent, Desal. Water Treat., 52 (2014) 7701–7710.
  25. Y. Aldegs, M. Elbarghouthi, A. Elsheikh, G. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigm., 77 (2008) 16–23.
  26. N. Abidi, J. Duplay, A. Jada, E. Errais, M. Ghazi, K. Semhi, M. Trabelsi-Ayadi, Removal of anionic dye from textile industries effluents by using Tunisian clays as adsorbents. Ζeta potential and streaming-induced potential measurements, C.R. Chim., 22 (2019) 113–125.
  27. A. Aguedach, S. Brosillon, J. Morvan, E.K. Lhadi, Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non-woven paper with SiO2 as a binder, J. Hazard. Mater., 150 (2008) 250–256.
  28. K.N.A. Putri, S. Kaewpichai, A. Keereerak, W. Chinpa, Facile green preparation of lignocellulosic biosorbent from lemongrass leaf for cationic dye adsorption, J. Polym. Environ., 29 (2021) 1681–1693.
  29. A.K. Nayak, A. Pal, Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function, J. Mol. Liq., 276 (2019) 67–77.
  30. S. Das, S.K. Dash, K.M. Parida, Kinetics, isotherm, and thermodynamic study for ultrafast adsorption of azo dye by an efficient sorbent: ternary Mg/(Al + Fe) layered double hydroxides, ACS Omega, 3 (2018) 2532–2545.
  31. E.A. Dil, M. Ghaedi, A. Asfaram, S. Hajati, F. Mehrabi, A. Goudarzi, Preparation of nanomaterials for the ultrasoundenhanced removal of Pb2+ ions and malachite green dye: chemometric optimization and modeling, Ultrason. Sonochem., 34 (2017) 677–691.
  32. L.B.L. Lim, N. Priyantha, H.H. Cheng, N.A. Hazirah, Parkia speciosa (Petai) pod as a potential low-cost adsorbent for the removal of toxic crystal violet dye, Sci. Bruneiana, 15 (2016) 99–106.
  33. C.R. Girish, Various isotherm models for multicomponent adsorption: a review, Int. J. Civ. Eng. Technol., 8 (2017) 80–86.