References
- L. Schweitzer, J. Noblet, Water Contamination and Pollution,
Green Chemistry, Elsevier, Netherlands, 2018, pp. 261–290,
doi: 10.1016/B978-0-12-809270-5.00011-X.
- K.H. Vardhan, P.S. Kumar, R.C. Panda, A review on heavy
metal pollution, toxicity and remedial measures: current
trends and future perspectives, J. Mol. Liq., 290 (2019) 111197,
doi: 10.1016/j.molliq.2019.111197.
- C.C. Osuna-Martínez, M.A. Armienta, M.E. Bergés-Tiznado,
F. Páez-Osuna, Arsenic in waters, soils, sediments, and biota
from Mexico: an environmental review, Sci. Total Environ.,
752 (2021) 142062, doi: 10.1016/j.scitotenv.2020.142062.
- S.D. Yang, Z.Y. Qu, W.F. Zhang, Z. Li, Y.H. Ding, Y.L. Jia, Q. Fan,
Study on drip irrigation anti-clogging experiment of Yellow
River water treated with inorganic adsorbent, J. Drain. Irrig.
Mach. Eng., 38 (2020) 517–522.
- G.P. Hu, Q.H. Zhao, L.F. Tao, P.N. Xiao, P.A. Webley, K.G. Li,
Enrichment of low grade CH4 from N2/CH4 mixtures using
vacuum swing adsorption with activated carbon, Chem. Eng.
Sci., 229 (2021) 116152, doi: 10.1016/j.ces.2020.116152.
- M. Arshadi, M.J. Amiri, S. Mousavi, Kinetic, equilibrium and
thermodynamic investigations of Ni(II), Cd(II), Cu(II) and
Co(II) adsorption on barley straw ash, Water Resour. Ind.,
6 (2014) 1–17.
- W. Xu, R.S. Zhu, J. Wang, Q. Fu, X.L. Wang, Y.Y. Zhao,
G.H. Zhao, Molecular dynamics simulations of the distance
between the cavitation bubble and benzamide wall impacting
collapse characteristics, J. Cleaner Prod., 352 (2022) 131633,
doi: 10.1016/j.jclepro.2022.131633.
- R.K. Sahu, R. Shankar, P. Mondal, S. Chand, Treatment
potential of EC towards bio-digester effluent: effects of process
parameters, aeration, and adsorbent, Desal. Water Treat.,
54 (2015) 1912–1924.
- R. Shankar, A.K. Varma, P. Mondal, S. Chand, Treatment of
biodigester effluent through EC followed by MFC: pollutants
removal and energy perspective, Environ. Prog. Sustainable
Energy, 38 (2019) 13139, doi: 10.1002/ep.13139.
- J.W. Wu, T. Wang, J.W. Wang, Y.S. Zhang, W.-P. Pan, A novel
modified method for the efficient removal of Pb and Cd
from wastewater by biochar: enhanced the ion exchange and
precipitation capacity, Sci. Total Environ., 754 (2021) 142150,
doi: 10.1016/j.scitotenv.2020.142150.
- S. Karimi, Y.M. Tavakkoli, R.R. Karri, A comprehensive
review of the adsorption mechanisms and factors influencing
the adsorption process from the perspective of bioethanol
dehydration, Renewable Sustainable Energy Rev., 107 (2019)
535–553.
- M. Czikkely, E. Neubauer, I. Fekete, P. Ymeri, C. Fogarassy,
Review of heavy metal adsorption processes by several organic
matters from wastewaters, Water, 10 (2018) 1377, doi: 10.3390/w10101377.
- G. Di, Z. Zhu, H. Zhang, J. Zhu, H.T. Lu, W. Zhang,
Y.L. Qiu, L.Y. Zhu, S. Küppers, Simultaneous removal of several
pharmaceuticals and arsenic on Zn-Fe mixed metal oxides:
combination of photocatalysis and adsorption, Chem. Eng. J.,
328 (2017) 141–151.
- Y.J. Feng, L.S. Yang, J.F. Liu, B.E. Logan, Electrochemical
technologies for wastewater treatment and resource
reclamation, Environ. Sci. Water Res. Technol., 2 (2016) 800–831.
- V. Ya, N. Martin, Y.H. Chou, Y.M. Chen, K.H. Choo, S.S. Chen,
C.W. Li, Electrochemical treatment for simultaneous removal
of heavy metals and organics from surface finishing
wastewater using sacrificial iron anode, J. Taiwan Inst. Chem.
Eng., 83 (2018) 107–114.
- I. Ahmad, M. Imran, M.B. Hussain, S. Hussain, Chapter 7 –
Remediation of Organic and Inorganic Pollutants from Soil: The
Role of Plant-Bacteria Partnership, N.A. Anjum, Ed., Chemical
Pollution Control with Microorganisms, Nova Publishers,
New York, USA, 2017, pp. 197–243.
- Y.K. Lee, J.G. Han, D.C. Kim, S.K. You, G. Hong, Effect of
nano-bubble on removal of complex heavy metals, J. Korean
Geosynth. Soc., 14 (2015) 139–146.
- M. Gągol, A. Przyjazny, G. Boczkaj, Highly effective degradation
of selected groups of organic compounds by cavitation based
AOPs under basic pH conditions, Ultrason. Sonochem.,
45 (2018) 257–266.
- M. Gągol, R.D.C. Soltani, A. Przyjazny, G. Boczkaj, Effective
degradation of sulfide ions and organic sulfides in cavitationbased
advanced oxidation processes (AOPs), Ultrason.
Sonochem., 58 (2019) 104610, doi: 10.1016/j.ultsonch.2019.05.027.
- W. Xu, R.S. Zhu, Q. Fu, X.L. Wang, Y.Y. Zhao, G.H. Zhao,
J. Wang, Analysis of the influence of factor parameters on
bubble collapse in a heavy metal complex system, J. Mol. Liq.,
347 (2022) 118377, doi: 10.1016/j.molliq.2021.118377.
- O.G. Dubrovskaya, V.A. Kulagin, L.M. Yao, The alternative
method of conditioning industrial wastewater containing
heavy metals based on the hydrothermodynamic cavitation
technology, IOP Conf. Ser.: Mater. Sci. Eng., 941 (2020) 012009,
doi: 10.1088/1757-899X/941/1/012009.
- I.C. Park, S.J. Kim, Effect of pH of the sulfuric acid bath on
cavitation erosion behavior in natural seawater of electroless
nickel plating coating, Appl. Surf. Sci., 483 (2019) 194–204.
- W. Xu, R.S. Zhu, Q. Fu, X.L. Wang, Y.Y. Zhao, J. Wang, Effect of
bubble collapse combined with oxidants on the benzamide by
molecular dynamics simulation, Ind. Eng. Chem. Res., 61 (2022)
5984–5993.
- S. Raut-Jadhav, D. Saini, S. Sonawane, A. Pandit, Effect of process
intensifying parameters on the hydrodynamic cavitation
based degradation of commercial pesticide (methomyl) in the
aqueous solution, Ultrason. Sonochem., 18 (2016) 283–293.
- A.J. Barik, P.R. Gogate, Degradation of 4-chloro 2-aminophenol
using a novel combined process based on hydrodynamic
cavitation, UV photolysis and ozone, Ultrason. Sonochem.,
30 (2016) 70–78.
- S. Saxena, V.K. Saharan, S. George, Enhanced synergistic
degradation efficiency using hybrid hydrodynamic cavitation
for treatment of tannery waste effluent, J. Cleaner Prod.,
198 (2018) 1406–1421.
- R.K. Joshi, P.R. Gogate, Degradation of dichlorvos using
hydrodynamic cavitation based treatment strategies,
Ultrason. Sonochem., 19 (2012) 532–539.
- S. Rajoriya, S. Bargole, V.K. Saharan, Degradation of a cationic
dye (Rhodamine 6G) using hydrodynamic cavitation coupled
with other oxidative agents: reaction mechanism and pathway,
Ultrason. Sonochem., 34 (2017) 183–194.
- X.N. Wang, J.Q. Jia, Y.L. Wang, Combination of photocatalysis
with hydrodynamic cavitation for degradation of tetracycline,
Chem. Eng. J., 315 (2017) 274–282.
- P. Thanekar, M. Panda, P.R. Gogate, Degradation of carbamazepine
using hydrodynamic cavitation combined with
advanced oxidation processes, Ultrason. Sonochem., 40 (2018)
567–576.
- P. Thanekar, P.R. Gogate, Combined hydrodynamic cavitation
based processes as an efficient treatment option for real
industrial effluent, Ultrason. Sonochem., 53 (2019) 202–213.
- K.P. Santo, M.L. Berkowitz, Shock wave interaction with a phospholipid
membrane: coarse-grained computer simulations,
J. Chem. Phys., 140 (2014) 054906, doi: 10.1063/1.4862987.
- V.H. Man, P.M. Truong, M.S. Li, J.M. Wang, N. Van-Oanh,
P. Derreumaux, P.H. Nguyen, Molecular mechanism of the cell
membrane pore formation induced by bubble stable cavitation,
J. Phys. Chem. B, 123 (2019) 71–78.
- Y.W. Gu, B.X. Li, M. Chen, An experimental study on
the cavitation of water with effects of SiO2 nanoparticles,
Exp. Therm. Fluid Sci., 79 (2016) 195–201.
- S. Jackson, A. Nakano, P. Vashishta, R.K. Kalia, Electrostrictive
cavitation in water induced by a SnO2 nanoparticle,
ACS Omega, 4 (2019) 22274–22279.
- G.Q. Zhou, P. Rajak, S. Susarla, P.M. Ajayan, R.K. Kalia,
A. Nakano, P. Vashishta, Molecular Simulation of MoS2 exfoliation,
Sci. Rep.-UK, 8 (2018) 16761, doi: 10.1038/s41598-018-35008-z.
- H.H. Fu, J. Comer, W.S. Cai, C. Chipot, Sonoporation at small
and large length scales: effect of cavitation bubble collapse on
membranes, J. Phys. Chem. Lett., 6 (2015) 413–418.
- U. Adhikari, A. Goliaei, M.L. Berkowitz, Mechanism of
membrane poration by shock wave induced nanobubble
collapse: a molecular dynamics study, J. Phys. Chem. B,
119 (2015) 6225–6234.
- N. Nan, D.Q. Si, G.H. Hu, Nanoscale cavitation in
perforation of cellular membrane by shock-wave induced
nanobubble collapse, J. Chem. Phys., 149 (2018) 074902,
doi: 10.1063/1.5037643.
- A.C.T.V. Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF:
a reactive force field for hydrocarbons, J. Phys. Chem. A,
105 (2001) 9396–9409.
- L.P. Wang, T.J. Martinez, V.S. Pande, Building force fields: an
automatic, systematic, and reproducible approach, J. Phys.
Chem. Lett., 5 (2014) 1885–1891.
- L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL:
a package for building initial configurations for molecular
dynamics simulations, J. Comput. Chem., 30 (2009) 2157–2164.
- J.L.F. Abascal, M.A. Gonzalez, J.L. Aragones, C. Valeriani,
Homogeneous
bubble nucleation in water at negative pressure:
a Voronoi polyhedra analysis, J. Chem. Phys., 135 (2013)
084508, doi: 10.1063/1.4790797.
- Y. Zhang, A. Sam, J.A. Finch, Temperature effect on single
bubble velocity profile in water and surfactant solution,
Colloids Surf., A, 223 (2003) 45–54.