References

  1. L. Schweitzer, J. Noblet, Water Contamination and Pollution, Green Chemistry, Elsevier, Netherlands, 2018, pp. 261–290, doi: 10.1016/B978-0-12-809270-5.00011-X.
  2. K.H. Vardhan, P.S. Kumar, R.C. Panda, A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives, J. Mol. Liq., 290 (2019) 111197, doi: 10.1016/j.molliq.2019.111197.
  3. C.C. Osuna-Martínez, M.A. Armienta, M.E. Bergés-Tiznado, F. Páez-Osuna, Arsenic in waters, soils, sediments, and biota from Mexico: an environmental review, Sci. Total Environ., 752 (2021) 142062, doi: 10.1016/j.scitotenv.2020.142062.
  4. S.D. Yang, Z.Y. Qu, W.F. Zhang, Z. Li, Y.H. Ding, Y.L. Jia, Q. Fan, Study on drip irrigation anti-clogging experiment of Yellow River water treated with inorganic adsorbent, J. Drain. Irrig. Mach. Eng., 38 (2020) 517–522.
  5. G.P. Hu, Q.H. Zhao, L.F. Tao, P.N. Xiao, P.A. Webley, K.G. Li, Enrichment of low grade CH4 from N2/CH4 mixtures using vacuum swing adsorption with activated carbon, Chem. Eng. Sci., 229 (2021) 116152, doi: 10.1016/j.ces.2020.116152.
  6. M. Arshadi, M.J. Amiri, S. Mousavi, Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash, Water Resour. Ind., 6 (2014) 1–17.
  7. W. Xu, R.S. Zhu, J. Wang, Q. Fu, X.L. Wang, Y.Y. Zhao, G.H. Zhao, Molecular dynamics simulations of the distance between the cavitation bubble and benzamide wall impacting collapse characteristics, J. Cleaner Prod., 352 (2022) 131633, doi: 10.1016/j.jclepro.2022.131633.
  8. R.K. Sahu, R. Shankar, P. Mondal, S. Chand, Treatment potential of EC towards bio-digester effluent: effects of process parameters, aeration, and adsorbent, Desal. Water Treat., 54 (2015) 1912–1924.
  9. R. Shankar, A.K. Varma, P. Mondal, S. Chand, Treatment of biodigester effluent through EC followed by MFC: pollutants removal and energy perspective, Environ. Prog. Sustainable Energy, 38 (2019) 13139, doi: 10.1002/ep.13139.
  10. J.W. Wu, T. Wang, J.W. Wang, Y.S. Zhang, W.-P. Pan, A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: enhanced the ion exchange and precipitation capacity, Sci. Total Environ., 754 (2021) 142150, doi: 10.1016/j.scitotenv.2020.142150.
  11. S. Karimi, Y.M. Tavakkoli, R.R. Karri, A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration, Renewable Sustainable Energy Rev., 107 (2019) 535–553.
  12. M. Czikkely, E. Neubauer, I. Fekete, P. Ymeri, C. Fogarassy, Review of heavy metal adsorption processes by several organic matters from wastewaters, Water, 10 (2018) 1377, doi: 10.3390/w10101377.
  13. G. Di, Z. Zhu, H. Zhang, J. Zhu, H.T. Lu, W. Zhang, Y.L. Qiu, L.Y. Zhu, S. Küppers, Simultaneous removal of several pharmaceuticals and arsenic on Zn-Fe mixed metal oxides: combination of photocatalysis and adsorption, Chem. Eng. J., 328 (2017) 141–151.
  14. Y.J. Feng, L.S. Yang, J.F. Liu, B.E. Logan, Electrochemical technologies for wastewater treatment and resource reclamation, Environ. Sci. Water Res. Technol., 2 (2016) 800–831.
  15. V. Ya, N. Martin, Y.H. Chou, Y.M. Chen, K.H. Choo, S.S. Chen, C.W. Li, Electrochemical treatment for simultaneous removal of heavy metals and organics from surface finishing wastewater using sacrificial iron anode, J. Taiwan Inst. Chem. Eng., 83 (2018) 107–114.
  16. I. Ahmad, M. Imran, M.B. Hussain, S. Hussain, Chapter 7 – Remediation of Organic and Inorganic Pollutants from Soil: The Role of Plant-Bacteria Partnership, N.A. Anjum, Ed., Chemical Pollution Control with Microorganisms, Nova Publishers, New York, USA, 2017, pp. 197–243.
  17. Y.K. Lee, J.G. Han, D.C. Kim, S.K. You, G. Hong, Effect of nano-bubble on removal of complex heavy metals, J. Korean Geosynth. Soc., 14 (2015) 139–146.
  18. M. Gągol, A. Przyjazny, G. Boczkaj, Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions, Ultrason. Sonochem., 45 (2018) 257–266.
  19. M. Gągol, R.D.C. Soltani, A. Przyjazny, G. Boczkaj, Effective degradation of sulfide ions and organic sulfides in cavitationbased advanced oxidation processes (AOPs), Ultrason. Sonochem., 58 (2019) 104610, doi: 10.1016/j.ultsonch.2019.05.027.
  20. W. Xu, R.S. Zhu, Q. Fu, X.L. Wang, Y.Y. Zhao, G.H. Zhao, J. Wang, Analysis of the influence of factor parameters on bubble collapse in a heavy metal complex system, J. Mol. Liq., 347 (2022) 118377, doi: 10.1016/j.molliq.2021.118377.
  21. O.G. Dubrovskaya, V.A. Kulagin, L.M. Yao, The alternative method of conditioning industrial wastewater containing heavy metals based on the hydrothermodynamic cavitation technology, IOP Conf. Ser.: Mater. Sci. Eng., 941 (2020) 012009, doi: 10.1088/1757-899X/941/1/012009.
  22. I.C. Park, S.J. Kim, Effect of pH of the sulfuric acid bath on cavitation erosion behavior in natural seawater of electroless nickel plating coating, Appl. Surf. Sci., 483 (2019) 194–204.
  23. W. Xu, R.S. Zhu, Q. Fu, X.L. Wang, Y.Y. Zhao, J. Wang, Effect of bubble collapse combined with oxidants on the benzamide by molecular dynamics simulation, Ind. Eng. Chem. Res., 61 (2022) 5984–5993.
  24. S. Raut-Jadhav, D. Saini, S. Sonawane, A. Pandit, Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution, Ultrason. Sonochem., 18 (2016) 283–293.
  25. A.J. Barik, P.R. Gogate, Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone, Ultrason. Sonochem., 30 (2016) 70–78.
  26. S. Saxena, V.K. Saharan, S. George, Enhanced synergistic degradation efficiency using hybrid hydrodynamic cavitation for treatment of tannery waste effluent, J. Cleaner Prod., 198 (2018) 1406–1421.
  27. R.K. Joshi, P.R. Gogate, Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies, Ultrason. Sonochem., 19 (2012) 532–539.
  28. S. Rajoriya, S. Bargole, V.K. Saharan, Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: reaction mechanism and pathway, Ultrason. Sonochem., 34 (2017) 183–194.
  29. X.N. Wang, J.Q. Jia, Y.L. Wang, Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline, Chem. Eng. J., 315 (2017) 274–282.
  30. P. Thanekar, M. Panda, P.R. Gogate, Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes, Ultrason. Sonochem., 40 (2018) 567–576.
  31. P. Thanekar, P.R. Gogate, Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent, Ultrason. Sonochem., 53 (2019) 202–213.
  32. K.P. Santo, M.L. Berkowitz, Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations, J. Chem. Phys., 140 (2014) 054906, doi: 10.1063/1.4862987.
  33. V.H. Man, P.M. Truong, M.S. Li, J.M. Wang, N. Van-Oanh, P. Derreumaux, P.H. Nguyen, Molecular mechanism of the cell membrane pore formation induced by bubble stable cavitation, J. Phys. Chem. B, 123 (2019) 71–78.
  34. Y.W. Gu, B.X. Li, M. Chen, An experimental study on the cavitation of water with effects of SiO2 nanoparticles, Exp. Therm. Fluid Sci., 79 (2016) 195–201.
  35. S. Jackson, A. Nakano, P. Vashishta, R.K. Kalia, Electrostrictive cavitation in water induced by a SnO2 nanoparticle, ACS Omega, 4 (2019) 22274–22279.
  36. G.Q. Zhou, P. Rajak, S. Susarla, P.M. Ajayan, R.K. Kalia, A. Nakano, P. Vashishta, Molecular Simulation of MoS2 exfoliation, Sci. Rep.-UK, 8 (2018) 16761, doi: 10.1038/s41598-018-35008-z.
  37. H.H. Fu, J. Comer, W.S. Cai, C. Chipot, Sonoporation at small and large length scales: effect of cavitation bubble collapse on membranes, J. Phys. Chem. Lett., 6 (2015) 413–418.
  38. U. Adhikari, A. Goliaei, M.L. Berkowitz, Mechanism of membrane poration by shock wave induced nanobubble collapse: a molecular dynamics study, J. Phys. Chem. B, 119 (2015) 6225–6234.
  39. N. Nan, D.Q. Si, G.H. Hu, Nanoscale cavitation in perforation of cellular membrane by shock-wave induced nanobubble collapse, J. Chem. Phys., 149 (2018) 074902, doi: 10.1063/1.5037643.
  40. A.C.T.V. Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A, 105 (2001) 9396–9409.
  41. L.P. Wang, T.J. Martinez, V.S. Pande, Building force fields: an automatic, systematic, and reproducible approach, J. Phys. Chem. Lett., 5 (2014) 1885–1891.
  42. L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations, J. Comput. Chem., 30 (2009) 2157–2164.
  43. J.L.F. Abascal, M.A. Gonzalez, J.L. Aragones, C. Valeriani, Homogeneous bubble nucleation in water at negative pressure: a Voronoi polyhedra analysis, J. Chem. Phys., 135 (2013) 084508, doi: 10.1063/1.4790797.
  44. Y. Zhang, A. Sam, J.A. Finch, Temperature effect on single bubble velocity profile in water and surfactant solution, Colloids Surf., A, 223 (2003) 45–54.